PXD Geometry Measurements

Commissioning @ KEK $13^{\text {th }}$ Sep, 2018

Varghese Babu DESY, Hamburg

The FaroArm measuring device. The company claims a measurement uncertainty of $20 \mu \mathrm{~m}$, but we consider a more conservative $50 \mu \mathrm{~m}$.

Phase-2 PXD

Side-view
30

Top-view $+$

Phase-3 PXD

Fixing the origin and z -axis.

Phase-3 PXD

Alignment of SCB's w.r.t each other

Between planes	2-D Angle	3-D Angle (twist along z-axis)
$5 \& 7$	0.0035 rad $(0.20 \mathrm{deg})$	0.0067 rad $(0.38 \mathrm{deg})$
$6 \& 8$	0.0032 rad $(0.18 \mathrm{deg})$	0.0048 rad $(0.27 \mathrm{deg})$

BWD

Phase-3 PXD

$B W D$

Gaps between top and bottom brass half-rings.

Between 3-D lines	Perpendicular distance (mm)
$2 \& 4$ (FWD)	23.90
$3 \& 5($ BWD $)$	23.78

> Difference of $\sim 120 \mu \mathrm{~m}$ between FWD and BWD

Phase-3 PXD
Alignment of brass half rings w.r.t.t. z-axis.

Phase-3 PXD

Alignment of brass half rings with SCB's.

The angles are between the brass ring normals defined in the previous slide and the 3-D lines defined along the SCB in slide- 6.

Caveat: The 3-D lines are taken along the edges between flat surfaces on the SCB, and the tip of the FaroArm is $\sim 3 \mathrm{~mm}$, so the direction vector may be subject to higher uncertainties.

Angle between SCB and brass half rings on FWD - top	$0.0103 \mathrm{rad}(0.58 \mathrm{deg})$
FWD - bottom	$0.0139 \mathrm{rad}(0.79 \mathrm{deg})$
BWD - top	$0.0113 \mathrm{rad}(0.64 \mathrm{deg})$
BWD - bottom	$0.0110 \mathrm{rad}(0.63 \mathrm{deg})$

Phase-3 PXD

Fitting Brass cylinders to get the

Perhaps the most important measurement as it tells us how close to SVD layer-3 we are.

Brass half ring	Diameter (mm)	Offset of fitted cylinder center from the z-axis in the $\mathrm{x}-\mathrm{y}$ plane (mm)
FWD-top (cy-3)	65.93	$(x, y)=(0.15,0.04)$
FWD-bottom (cy-4)	65.82	$(x, y)=(0.16,-0.12)$
BWD-top $(c y-5)$	65.77	$(x, y)=(-0.12,0.16)$
BWD-bottom $(c y-6)$	65.81	$(x, y)=(-0.11,-0.15)$

Thank you!

Phase-3 PXD

Sanity check-1

Sanity check for the brass half-rings

Angle between the cylinder axes obtained by fitting the back plane vs that of the cylinder-fit. Ideally both normals should be parallel and hence the angle should be 0 .

Angle for cylinder-3 $=0.0018 \mathrm{rad}(0.10 \mathrm{deg})$
Angle for cylinder-4 $=0.0007 \mathrm{rad}(0.04 \mathrm{deg})$
Angle for cylinder-5 $=0.0003 \mathrm{rad}(0.02 \mathrm{deg})$
Angle for cylinder-6 $=0.0007 \mathrm{rad}$ (0.04 deg)

