A Pulse Shape Simulation for the GERDA Experiment

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Daniel Lenz Max-Planck-Institute for Physics, Munich

Outline:

- Motivation for Search for $0\gamma\beta\beta$
- Double Beta Decay and Experimental Signatures
- GERDA Goals and Concept
- Pulse Shape Simulation
- Summary

Evaluation of the IMPRS EPP December 4th, 2009

Motivation

- **GER**manium **D**etector **A**rray (GERDA) experiment built to search for neutrinoless double beta decay $(0\nu\beta\beta)$ of ⁷⁶Ge
- $0_{\nu\beta\beta}$ is the only way to unveil the nature of neutrinos

- If $0\nu\beta\beta$ observed:
 - neutrino is Majorana type

Phys. Rev. D (1982) 25, 2951

- lepton number violation $\Delta L = 2$
- type I seesaw mechanism

$$m_v = \frac{m_D^2}{M_R} << m_D$$

- possible to determine absolute neutrino mass scale
- possible to determine neutrino hierarchy

What is $\beta\beta$ Decay

- allowed process
- observed for several isotopes
- T_{1/2} ~ O(10²⁰) y

effective Majorana neutrino mass:

$$|\boldsymbol{m}_{ee}| = |\sum_{j} \boldsymbol{m}_{j} \boldsymbol{U}_{ej}^{2}|$$

$$\mathbf{T}_{1/2} \propto |\mathbf{m}_{ee}|^{-2}$$

- forbidden process in SM, needs Majorana neutrino
- $T_{1/2}(^{76}Ge) \ge 1.9 \cdot 10^{25} \text{ y (90\% C.L.)}$ Eur. Phys. J. A12, 147-154 (2001)
- claim of signal from parts of HdM NIM A 522 (2004) 371-406

Evaluation of the IMPRS EPP December 4th, 2009

Experimental Signature

Evaluation of the IMPRS EPP December 4th, 2009

GERDA Goals

- Phase I: operate existing ⁷⁶Ge detectors from HdM and IGEX + natGe Diodes
 • reach background of 10⁻² cts/(keV kg y)
 - exposure of ~ 15kg y, **check claim**
- Phase II: operate new segmented ⁷⁶Ge detectors
 - reach background of 10⁻³ cts/(keV kg y)
 - exposure of ~100kg $y \Rightarrow T_{_{1/2}} \ge 1.35 \cdot 10^{_{26}} y$

Evaluation of the IMPRS EPP December 4th, 2009

low background Phase I: O(10¹) <

rate HdM Ce l

NSSI

GERDA Concept

LNGS:

👕 🕇 3800 m. w. e. rock above 👕

Plastic scintillators on top as muon veto

Watertank: r = 5m, h = 9.0m590m³ ultra-pure **water** acts as: n moderator • μ cherenkov veto Cryostat: (copper-lining) r = 2.1m, h = 5m70m³ liquid Argon acts as: shielding medium

cooling medium

Evaluation of the IMPRS EPP December 4th, 2009

GERDA Concept

Clean room: Class 10.000

Detector array:

- 3 detectors per string
- up to 16 strings

• little (high-Z) material close to detectors

Evaluation of the IMPRS EPP December 4th, 2009

Active Background Reduction

Evaluation of the IMPRS EPP December 4th, 2009

Pulse Shape Simulation - Why?

samples of SSE and MSE are needed to understand efficiencies of PSA

- MSE can be easily extracted from data (MeV photon peaks)
- SSE can be also be extracted from data (Double Escape Peak)
- **BUT**: samples are not pure SSE or MSE
 - events are not homogeniously distributed throughout the detector

can be overcome

BUT takes long time to record samples

- Data should be supplemented by simulated pulses
 - PSS can give insights into crystal properties
 - helps reconstructing interaction positions

Evaluation of the IMPRS EPP December 4th, 2009

Pulse Shape Simulation - Basic Principle

- **energy deposit** ⇒ electrons holes created
- charges drift under influence of external E-Field
- drifting charges induce pulses on electrodes

- 1. simulate energy deposit using MaGe
- 2. group hits according to position bandwidth and sampling frequency
- 3. determine number of electron hole pairs
- 4. calculate E-Field inside detector
- 5. calculate drift of charge carriers
 - alculate induced charges using weighting potentials
- 6. take into account electronics effect, i.e noise, bandwidth...

Pulse Shape Simulation - Electric Field

Solve Poisson-equation:

$$\nabla^2 \varphi(\vec{r}) = \frac{1}{(\epsilon_0 \cdot \epsilon_R)} \cdot \rho(\vec{r})$$

numerical procedure: Successive Overrelaxation (SOR)

numerical calculation works

- impurity density ρ dominates the electric field
- ρ changes with radius, height and also in azimuthal angle ϕ

Pulse Shape Simulation - Drift

Drift:

$$\vec{v}(\vec{r}) = \mu_{e,h} \vec{E}(\vec{r})$$

- in direction <100>, (110> and (111> µ_{e,h} parallel to E-Field otherwise not!
- experimental data along axes exists
 ⇒ mobility can extracted along axes

Charge carrier drift in **any** direction can be computed using mobilities along (100) and (111) directions

Evaluation of the IMPRS EPP December 4th, 2009 with $\mu_{e,h}$ depends on temperature, electric Field and **structure** of **germanium crystal**

Pulse Shape Simulation - Drift

- drift charges in **fixed time intervall** Δt
- start position equally spaced on outer/inner surface

Evaluation of the IMPRS EPP December 4th, 2009

Pulse Shape Simulation - Induced Charges

Shockley-Ramos Theorem:

$$Q_{induced}^{i}(t) = q_{e} \cdot \phi_{W}^{i}(\vec{r}(t)) + q_{h} \cdot \phi_{W}^{i}(\vec{r}'(t))$$

Weighting Potential:

calculated solving Laplace equation BC WP on electrode 1, otherwise 0 no analytical solution in 3D for 18 segments

Need numerical calculation (SOR)

Pulse Shape Simulation - Results

adding electronics bandwidth and DAQ sampling frequency

Daniel Lenz GERDA, Germanium Detector Development

Evaluation of the IMPRS EPP December 4th, 2009

- Neutrinoless double beta decay only way to unveil the nature of the neutrino
- GERDA will search for $0\nu\beta\beta$ and check claim of parts of the HDM group
- Background reduction is crucial: **Anti-coincidence** and **Pulse Shape Analysis** needed to reduce background
- Realistic pulse shape simulation needed to fully understand PSA
- Realistic pulse shape simulation was succesfully developed

Extras

Evaluation of the IMPRS EPP December 4th, 2009

Other Possibilities of $0\nu\beta\beta$

R-Parity violation SUSY:

 $\begin{array}{c|c} u \\ \hline d \\ \tilde{\chi}^{0}, \tilde{g} \\ \hline d \\ \hline d \\ \hline d \\ \hline d \\ \hline \end{array} \begin{array}{c} u \\ e \\ \hline e \\ \hline e \\ \hline e \\ \hline \end{array}$

Leptoquarks:

du \tilde{e} \overline{d} e S, V^{μ} eu $\tilde{\chi}^0$ ν_M ee \tilde{e} W^{-} du \overline{d} u Even more:

- Theories allowing for right handed currents
- Compositness
- Heavy Majorana neutrino exchange

Strongest bounds on λ'_{111} from $0\nu\beta\beta$ e.g. Physics Reports 420: 1-202, 2005

Evaluation of the IMPRS EPP December 4th, 2009

Halflife Limits

Heidelberg-Moscow experiment:

- 5 enriched Ge p-type crystals
- background index ~0.1 cts/(keV kg y)
- $T_{1/2} \ge 1.9 \cdot 10^{25} \text{ y (90\% C.L.)} 35.5 \text{ kg y}$ Eur. Phys. J. A12, 147-154 (2001)

• part of collaboration claims a signal Mod. Phys. Lett. A16 2409-2420 (2001), NIM A 522 (2004) 371-406

IGEX:

3 enriched Ge p-type crystals

• $T_{1/2} \ge 1.57 \cdot 10^{25} \text{ y (90\% C.L.)} 8.87 \text{ kg y}$ NP B (Proc.Suppl.) 87 (2000) 278

Cuoricino: Phys. Rev. C 78 (2008) 035502

62 TeO₂ bolometers 40.7kg

• $T_{1/2} \ge 3.0 \cdot 10^{24} \text{ y} (90\% \text{ C.L.})$ 11.83 kg y

Evaluation of the IMPRS EPP December 4th, 2009

Experimental Considerations - Germanium Detectors

$$T_{1/2} \propto const \cdot \epsilon \cdot (M \cdot T / b \cdot \Delta E)^{1/2}$$
 if background

general considerations

Ge detectors

- high Q-value:
 - phase space scales with Q⁵
 - natural radioactivity contribution reduced
- large target mass M; large natural abundance, or enrichment
- high signal effiency ϵ
- low background rate b in ROI crucial! rate := counts/(keV · kg·y)
- **good energy resolution** ΔE to separate $0\nu\beta\beta$ from $(2\nu\beta\beta + other bkg)$

• $Q_{\beta\beta}(^{76}Ge) = 2039 \text{ keV}$

- enrichement in ⁷⁶Ge of 86%
- source = detector
- germanium is one of the purest materials to produce
- excellent energy resolution FWHM(Q_{BB}) < 5keV; $\Delta E/E = 0.2\%$

Background

Background: processes which cause energy deposition inside Region Of Interest

Expected Background Phase II

- simulation of an array with 21 segmented detectors, 7 strings, each 3 detectors
- simulation carried out with MaGe (MajoranaGerda) GEANT4 based framework

Background contribution Part $[10^{-4} \text{ counts}/(\text{keV}\cdot\text{kg}\cdot\text{y})]$ ⁶⁸Ge main source Crystal 18 Holder 3 R&D for new cable Cabling 18 **Electronics** 5 Muons ~ 0.1 including muon veto Neutrons ~ 0.1 external n negligible Total ~ 44

PSA Example

- n-type 18-fold segmented HP Ge detector
- only core pulse used

