Flavor Physics in Warped Extra Dimensions

Björn Duling

Physik-Department der Technischen Universität München

and

Graduiertenkolleg "Particle Physics at the Energy Frontier of New Phenomena"

München, 11 December 2009

Outline

Motivation

- 2 Brief Model Description
- 3 Selected Flavor Observables

 $\begin{array}{l} \epsilon_{\mathbf{K}} \\ \mathbf{S}_{\psi\phi} \\ \mathbf{K} \to \pi \nu \bar{\nu} \end{array}$

Based on collaboration with

Michaela Albrecht, Monika Blanke, Andrzej Buras, Katrin Gemmler, Stefania Gori, Andreas Weiler

Thanks to Wolfgang Altmannshofer, David Straub

Two Ways to Look for New Physics

The high-energy frontier

The high-precision frontier

Collider physics

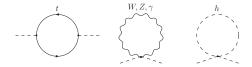
- direct production of new particles
- determine the energy scale of NP

Flavour physics

- new particles probed through quantum corrections
- determine the flavour structure of NP

LHC, Tevatron

(Super-) *B* factories, LHCb, Tevatron, EDM searches


Why Do We Need NP I: Hierarchy Problem(s)

• The Planck scale is much larger than the EW scale:

$$rac{v}{M_{
m Pl}} \sim 10^{-16}$$

Is there a deeper reason for such a large hierarchy?

• The Higgs mass is unstable with respect to radiative corrections

Why does the Higgs mass not end up at the Planck scale? What keeps the EW and Planck scales apart?

Why Do We Need NP II: the Flavor Puzzle

• The SM fermions have vastly different masses.

In the quark sector alone they span five orders of magnitude:

 $m_u \approx 5 {
m MeV}$ while $m_t \approx 172.5 {
m GeV}$

Also the elements of the CKM matrix are very different in size:

 $|V_{ud}| \approx 1$ while $|V_{us}| \simeq 0.226$, $|V_{cb}| \simeq 0.041$, $|V_{ub}| \simeq 0.0038$

 \Rightarrow The underlying Yukawa matrices must have a very special structure

$$\begin{array}{lll} Y_D &\approx & \left(10^{-5}, 0.0005, 0.026\right) \\ Y_U &\approx & \left(\begin{array}{ccc} 10^{-5} & -0.002 & 0.007 + 0.004i \\ 10^{-6} & 0.007 & -0.04 + 0.0008i \\ 10^{-8} + 10^{-7}i & 0.0003 & 0.96 \end{array} \right) \end{array}$$

This looks unnatural. Is that an accident or is there a deeper reason?

NOT an Analogy

NOT an Analogy

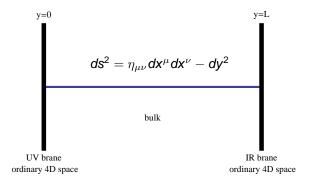
More fundamental theory:

A Possible Solution

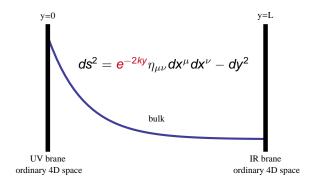
An **additional space dimension** could address both of these issues. As for its motivation, there are two schools of thought:

- top-down approach: string theory (presumably) says so
- bottom-up approach: why not!

In any case, the extra dimension must be **compactified**, e.g. on a circle. Experimential constraints on its size (torsion balance experiments) then are comparably weak:


- accelerator experiments
 - $\Rightarrow 1/R > E_{accelerators} \sim \mathcal{O}(1 \, TeV)$
- torsion balance experiments (Eötwash) $\Rightarrow 1/R > 60 \mu m$

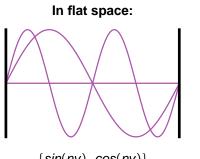
The Randall-Sundrum Setup


[Randall, Sundrum, hep-ph/9905221]

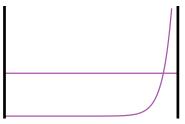
If "sensible" periodicity and boundary conditions are imposed, a circle is **equivalent to an interval** with $L = \frac{2\pi R}{2}$

The Randall-Sundrum Setup

[Randall, Sundrum, hep-ph/9905221]


- RS Metric is a solution of the 5D Einstein equations
- Energy scales are "warped down" as one approaches the IR brane
- Localizing the Higgs at the IR brane and setting *kL* ≈ 36 naturally explains the smallness of the EW scale!

Björn Duling (TUM)


Field Localization

Force and matter fields can propagate into the bulk.

For each field, equations of motion allow for infinitely many discrete solutions/profiles along the 5th dimension \rightarrow Kaluza-Klein tower

In warped space:

 $\{sin(ny), cos(ny)\}$

 $e^{rky}\left\{J_{\alpha}(\frac{m_n}{M_{KK}}ky), Y_{\alpha}(\frac{m_n}{M_{KK}}ky)\right\}$

Only for appropriate boundary conditions massless zero-modes are present

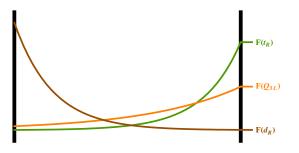
Björn Duling (TUM)

Fermions

There are **no chiral fermions** in odd numbers of space-time dimensions. 4D chiral fermions can be obtained by introducing **three separate 5D fermions** per quark generation.

$$Q_L^i \sim {f 2}, \ U_R^j \sim {f 1}, \ D_R^i \sim {f 1} \qquad i=1,2,3$$

Bonus features:


- all of these 5D fermions can have individual 5D Dirac masses
- these 5D Dirac masses ($c \equiv m_{\rm Dirac}^{5D}/k$) exponentially influence the localization of their zero-modes

Origin of Mass Hierarchies

a.k.a. Geometrical Sequestering

[Arkani-Hamed, Schmaltz, hep-ph/9903417]

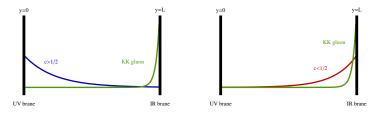
Effective Yukawa couplings:

$$(Y_{u,d})_{ij} = (\lambda_{u,d})_{ij} F^i_Q F^i_{u,d}$$

Anarchic 5D Yukawas

 \Rightarrow Hierarchical effective Yukawas

Hierarchical brane values


Björn Duling (TUM

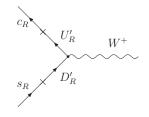
Flavor Changing Gauge Couplings

• 4D gauge couplings are determined by overlap integrals

$$\sim rac{1}{L^{3/2}} \int\limits_{0}^{L} dy \, f_{ferm}(y) f_{ferm}(y) f_{gauge}(y)$$

Couplings of SM fermions to KK gauge bosons are non-universal

• When going to the quark mass eigenstate basis:

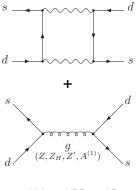

Non-universalities \Rightarrow Flavor off-diagonal couplings

Björn Duling (TUM

FCNCs in WED

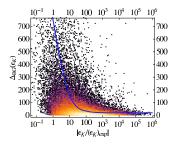
Fermion - KK Fermion Mixing

... is the only effect that generates right-handed W couplings.

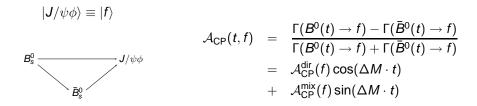


In the zero-mode approximation:

- SM Fermions mix with KK fermions of the same electric charge after EWSB
- KK fermions can have different quantum numbers and hence different gauge couplings
- In the mass eigenstate basis \Rightarrow flavor off-diagonal couplings

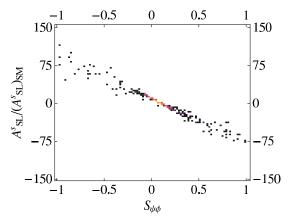

In the RS model with custodial protection we have

- flavor changing KK gauge boson couplings
- flavor changing Z couplings (has KK admixtures)
- a slightly non-unitary CKM matrix
- right-handed W couplings
- flavor changing Higgs couplings

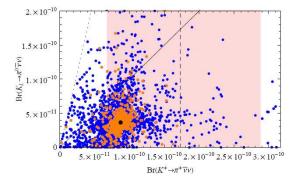


 $\begin{aligned} & Q_1^{VLL}, \ Q_1^{VRR}, \ Q_1^{LR} \\ & Q_2^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd) \end{aligned}$

strongly enhanced additional operator



- For $M_{\rm KK} \simeq 2.45 {
 m TeV}$, ϵ_K is by a factor ~ 100 too large
- Despite a generic bound *M*_{KK} ≥ 20TeV one could get away with smaller values


 $S_{\psi\phi} \equiv -A_{CP}^{mix}$ is a measure for the amount of CP violation in $B_s - \bar{B}_s$ mixing $S_{\psi\phi}$ is very suppressed in the SM \Rightarrow large relative NP effects possible

Hot Topic: $S_{\psi\phi}$

- $S_{\psi\phi}$ is potentially large in the RS model
- $S_{\psi\phi}$ will be measured at LHCb with high precision

Hot Topic: $\mathbf{K} \rightarrow \pi \nu \bar{\nu}$

- Both branching ratios are potentially large
- For both there are experiments being built (NA62 at CERN and KOTO at KEK)
- In many models strong correlations exist → falsifiability

A Testable Signature: $K \rightarrow \pi \nu \bar{\nu}$ vs $S_{\psi \phi}$

- $Br(K \rightarrow \pi \nu \bar{\nu})$ and $S_{\psi \phi}$ can both recieve large enhancements
- This seems not to be the case simultaneously
- Reason for this behavior is understood
- Allows for falsifiability

- The RS-C model addresses the gauge hierarchy problem and flavor puzzle
- · It has a number of interesting flavor effects

- *ε_K* is generically too large for low *M*_{KK} but the constraint can be satisfied
- $S_{\psi\phi}$ can be strongly enhanced beyond its SM value
- Enhancements in rare K decays are typically factors 2-3
- The RS-C model displays signatures that allow for its experimental verification/test/falsification