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1 
Introduction to Cosmology 

I. Short Introduction to Cosmology 
1. Historical notes: 

The meaning oft he word cosmology stems from antient grek: 

ὁ  κόσμοσ the universe 

ὁ λόγοσ the word 

~. 600 BC: Anaximander and Thales von Milet 

 Knowledge that earth is round. Prediction of solar eclipse 585 b.C.! 

~. 310 – 230 BC.: Aristarch of Samos 

 Heliocentrical worl model 

 Calculates size of moon and distance to sun! 

 Rightly estimates distance to stars using parallax 

 

  

83 – 161 AC: Claudius Ptolemäus 

 Almagest: Astronomical textbook: Geocentrical world model 

 Did explain all observations at its time! 

  Ptolemäic geo-centrical world 

modelgeozentrisches Weltbild 

Aristarch of Samos (3. Century 
BC) :  Calculation of size of moon 

and distance to sun 
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1473 – 1543 Nicolaus Copernicus 

 Helio-centric world model: „de revolutionibus orbium coelestium“ (Von den 

Umdrehungen der Himmelskörper) 

 Perfection of circular movement  

 Rightly estimates distance to stars using prallax 

 

 

  

 Copernican helio-centrical world-model 

Copernican world-model: Page 
from „De Revolutionibus Orbium 
Coelestium“ 



Particle Physics at Colliders and in the early universe WS 2019/19, TUM PD Dr. B. Majorovits 
 

3 
Introduction to Cosmology 

1572: Tycho Brahe observes Supernova without observing parallax 

 Sphere of stars is NOT eternal! 

1643 – 1727 Sir Isaac Newton: 

 Couples astronomical (cosmological) observations to earthly mechanics! 

 Predicts clunmping due to gravity  Predicts contraction of universe that is not 

observed 

 eternal, homogeneous Univers! 

1750 Thomas Wright of Durham:  

 Interpretation of sun as on sun of many in our galaxy (nebula) Island universe 

1755 Immanuel Kant: 

 Interpretation of nebulae as galaxies as our own  

  

2. Fundamental Observations 

 

Lets assum (most intuitive???) 

 homogeneous 

 eternal, endless 

 euklidean 

 static 

Univers  Olbers Paradoxon: 

For above assupmtion (static & endless): Always find a star in line of sight. 
 As surface brightness is independent of distance, night sky should be bright as sun 

 

 At least one assumption wrong! 

 

We observe: 

On large scales universe is homogeneous: 

 Cosmic Microwave 

Distribution of Galaxies 

  

No scientific reason why our position in universe should be special  

Most intuitive ??? 
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 Universe should be isotropic from all positions 

Assumption of isotropic universe at two distinct points in the universe leads to conclusion of 

homogeneity of universe! 

 

 

 

 

 

 

 

 

 

Redshift of galaxies: 

E. Hubble 1929: Publication  of Hubbles law (verry sloppy!). 

[wrong units; no uncertainties; removal of data without „good reason“, no statistical 

significance given] 

Due to isotropy at each equidistant 

point around A density ist he same. 

The same holds for equidistant 

points around B. 

Isotropy around A AND B can only 

be given if universe is homogeneous! 

Cosmological Principle: 

Our universe is 

- homogeneous 

- isotropic 
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Observation that (apart from a few galaxies in kocal group) all galaxies move away from us, 

the faster the further away: 

 Hubble law V ≅ H0 d 

withe H0 Hubble parameter and d distance. 

H0 correpsonds to present expansion rate of Universe. 

H0 = h 100 km/s Mpc-1  

 

What is Red shift? 

 Doppler effect: 

Moving source with (radial-) velocity 𝑣 relative to observer  Wave-length changes 

∆𝜆 = 𝜆 ∙
𝑣

𝑐
 ,  or  ∆𝜈 = 𝜈 ∙

𝑣

𝑐
       (𝜈 =

𝑐

𝜆
) 

 Looks like all galaxies are moving away from us. 

This would mean: We are at the centre of the Universe  

Contradiction to Cosmological Principle! 

 

Alternativ interpretation: 

Red-shift appears as since the time light was emitted space expanded 

Hubble diagram in original Publication 

(Proc. NAS, Vol 15, 1929). 



Particle Physics at Colliders and in the early universe WS 2019/19, TUM PD Dr. B. Majorovits 
 

6 
Introduction to Cosmology 

 

 At every location of the universe: galaxies seem to move away isotropically fromobserver 

 Universe NOT static? 

 

Consequence of Hubble expansion: 

H0 = h 100 km/s Mpc-1  

Wobei h = 0.73−0.04
+0.03 

„Expansion of space, i.e. Universe: to Mpc per second 100 km space „are added“ 

Or:  

H0 = h ∙ 3.24 ∙ 10-18 s-1    oder  H0 = h ∙   
å

𝑚

 yr-1  

 constant  H0 : Distance of 1m today was = at time Hubble  time Thubble = 1/h  ∙  10-10 years! 

 characteristic time scale of our universe 

Hubble time well agrees with age of oldest known object in the universe! 

 Total energy content of universe was gathered in much smaller space. 

 Energy density was very high  Universe was „very hot“ 

“Big Bang“ 

 

Hubble-Distance: Dhubble  = c Thubble = c/ H0 
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≅ 1/h 3000 Mpc ≅ 1/h 1010 light years 

Size of biggest observed structures in galaxy surveys: ~109 light year 

Hubble volume Dhubble
3 fits ~10³ of these structures 

Over Hubble-distance: Assumption of homogeneity seems justified! 

 

3. Einstein´s Field Equations 

The derivation of Einstein´s field equations is very technical and matter of a dedicated lecture. Let´s, 

however, look at the main basic idea leading to its derivation: 

The equivalence principle: 

Newton´s first law:    𝐹 =  𝑚𝑖  𝑎 

Law of gravitation:  𝐹 =  𝑚𝑔 𝑎 

where 𝑚𝑖 is the inertial and 𝑚𝑔 is the gravitating mass. The weak equivalence principle states that  

𝑚𝑖 = 𝑚𝑔  . This a priori cannot be stated. However, measurements show that 

|1 −
𝑚𝑔

𝑚𝑖
| < 10−12 

How can this be measured? 

If this is generalized to inertial systems we obtain the strong equivalence principle:  

From within an inertial system there is no way to tell the difference whether one is in free fall in a 

gravitational potential or whether on does not experience any gravitational force. I.e. there is no way 

to experimentally distinguish between free fall in a potential and weightlessness. 

[Caution with non-homogeneity of gravitational fields: they cause tidal effects!]  

 Gedankenexperiment:  

 

 

 

Consider an inertial system that is in free fall. A light ray 

propagating through vertically to the force through this 

inertial system seems straight to an observer in this 

system. An observer on earth would, however, see a 

bent light ray 

 Gravitating mass is curving space! 
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A short look at the relativistic description of space time: 

x0 = c t, x1 = xt,  x2 = y,   x3 = z   or 

xμ = ( c t, 𝑟 ) = (x0, x1 ,x2 ,x3) 

Observation: Invariance of speed of light, i.e. of the line element 

 

For flat (Euclidean) space this means the line element 

 

ds2 = c2dt2 – [(dx1)2 + (dx2)2 + (dx3)2]   

 

= (

𝑑𝑥0

𝑑𝑥1

𝑑𝑥2

𝑑𝑥3

)

𝑇

(

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(

𝑑𝑥0

𝑑𝑥1

𝑑𝑥2

𝑑𝑥3

)  

 

=  ∑ 𝜂𝜇𝜈𝜇,𝜈 𝑑𝑥𝜇𝑑𝑥𝜈 

 

=  𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈         (Einstein summation rule) 

 

= 0 

The metric is orthogonal  no curvature.   

𝜂𝜇𝜈  =  (

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)   

is the Minkowski metric, i.e. the metric describing a flat space-time (Minkowski space). It is 

defined by the line element 𝑑𝑠2 = 0 in flat Euclidean space. 

 

 

The development of our universe, i.e. of our space time structure, is determined by the 

initial conditions and the physical laws that govern its dynamics as a function of its content. 

 Einstein´s field equation:  

Geometrical properties of space-time         Source of “field” 

𝑹𝝁𝝂 −
𝟏

𝟐
𝒈𝝁𝝂𝑹 − 𝜦𝒈𝝁𝝂 = 𝟖 𝝅 𝑮/𝒄

𝟒𝑻𝝁𝝂 
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𝑅𝜇𝜈: Ricci Tensor, 𝑔𝜇𝜈: metric tensor (contains time dependent scaling factor), R: Ricci scaler, 𝛬: 

Cosmological constant; 𝐺. Newton´s gravitational constant, 

 𝑇𝜇𝜈: Energy momentum tensor 

Rough meaning of the equation: The space time structure and its dynamic are determined by its 

content. 

The Einstein tensor: 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 describes the structure of space time. It quantifies the 

interconnections between the space time dimensions. (see Riemann Tensor, Christoffel symbols). 

8 𝜋 𝐺/𝑐4𝑇𝜇𝜈   defines the gravitating energy content of space time. 

𝛬 is a constant that can be added without loss of generality. It corresponds to a “vacuum energy” of 

space time. 

Einstein´s field equations are differential equations. I.e. they describe how the metric, describing 

space time, evolves driven by the energy content of space time.  

 

 

4. The Robertson-Walker metric 

For a homogeneous and isotropic space time, i.e. for a universe according to the 

cosmological principle it can be shown that the simplest metric can be described by the line 

element: 

 

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)(
𝑑𝑟2

1−𝑘𝑟2
+ 𝑟2𝑑𝜗2 + 𝑟2𝑠𝑖𝑛2𝜗𝑑𝜑2), 

 

the Robertson-Walker metric. 

Here 𝑎(𝑡) is a time dependent, dimensionless scaling factor, 

𝑟, 𝜗, 𝜑 are the spherical co-moving coordinates 

𝑘 =  −1, 0 , 1     is the curvature constant. 

In a 2 dimensional representation the different geometries as a function of curvature 

constants can be displayed as a saddle for 𝑘 =  −1, a Euclidean plane for 𝑘 =  0  or a sphere 

for 𝑘 = 1. 

                 
 

𝑘 =  +1    𝑘 =  0     𝑘 =  −1 
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𝑔𝜇𝜈 = 

(

 
 

1 0 0 0

0
−𝑎2

1−𝑘𝑟2
0 0

0 0 −𝑎2𝑟2 0
0 0 0 −𝑎2𝑟2𝑠𝑖𝑛2𝜗)

 
 

 

is the metric tensor. 

The metric can be derive by demanding that a circle around the pole of a sphere has a 

circumference (in the metric) of 𝑐 = 2 𝜋 𝑟′. 

   

The curvature can be described by 

 𝐾 = 3
𝜋 
lim𝑆→0

2𝜋𝑆−𝑐

𝑆3
,    where 

𝑆 = the measured radius of a circle  

𝑐 = the measured circumference 

 

For two dimensions this is easy to imagine, as it is easy to embed the auxiliary dimension 

(radius of the sphere, 𝑎 into euclidean space. 

This is mathematically not even needed, as 𝑎 is dimensionless  

 Same derivation in three dimensional space. 

 

For 𝑘 = −1 even in two dimensions the derivation is not intuitive, the basic idea is, 

however, the same as for 𝑘 = 1 and 𝑘 = 0. 

 

The concept of co-moving coordinates: 

There is a frame of reference in which coordinates 𝑟, 𝜗, 𝜑 are constant while scaling factor 

𝑎(𝑡) is changing. 

𝑟 = 𝑟′

𝑎
= 𝑠𝑖𝑛𝜗   

 𝑑𝑠2=𝑎2(
𝑑𝑟2

1−𝑘𝑟2
 +𝑟2 𝑑𝜑2) 
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For 𝑘 = 0 this can be interpreted as “raisins moving away from each other in a cake in the 

oven”.  

 

For 𝑘 = 1 in a 2 dimensional view, using an auxiliary dimension this can be interpreted as 

an address on the surface of a balloon blown up to radius 𝑎. Regardless of the radius, the 

“address” in terms of the coordinates 𝑟, 𝜗, 𝜑 stays the same. 

For 𝑘 = −1: How to interpret a swelling saddle? Let your fantasy play! 

It is possible to introduce conformal time: 𝑑𝜂 = 𝑑𝑡

𝑎(𝑡)
 to treat the time coordinate the same 

way. 

 𝑑𝑠2 =  𝑎2(𝜂)(𝑑𝜂2 − 𝑑𝑟2

1−𝑘𝑟2
−𝑟2𝑑𝛺2)  where 𝑑𝛺2= 𝑑𝜗2 + 𝑠𝑖𝑛2𝜗𝑑𝜑2 

Meaning of the scale factor: 

The distance between two points is proportional to the scale factor. 

 For increasing 𝑎(𝑡): space is expanding! 

Compare to Hubble´s law    𝐻 =  
𝑎̇

𝑎
    

If we now assume that 𝑎̇ > 0 for all t 

 Universe looks the same for all observers at time t0 regardless of their coordinates. 

How to synchronize time of observation t0? 
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Use cosmological “clocks” like cosmic background radiation (CMB): There is a well-defined 

relation between observation time t0 and the temperature of the CMB 

 There is a non-moving reference system of commoving coordinates. 

In reality: There is a dipole moment in the CMB of order 10-3. This can be interpreted as 

the movement of sun relative to co-moving reference frame. Indeed, there should be 

movement of: our sun around the galactic center, the movement of our galaxy within the 

local cluster (Virgo cluster) and the movement of the Virgo cluster towards the “great 

attractor”. 

But how does 𝑎(𝑡) change with time? 

All the dynamics are written in Einstein´s field equations: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 − 𝛬𝑔𝜇𝜈 = 8 𝜋 𝐺/𝑐

4𝑇𝜇𝜈 

The Ricci tensor 𝑅𝜇𝜈 contains derivatives of the metric tensors to all coordinates, 

including time.  

The metric tensor  𝑔𝜇𝜈 contains the time dependent scaling factor. Solutions need to be 

found that satisfy the equation. 

The energy momentum tensor 𝑇𝜇𝜈 describes the energy content of the “cosmic fluid”. 

The cosmological constant 𝛬 can be added. Only with this constant it is possible to 

construct a model of a static universe. 

To derive the standard model of cosmology the “energy content” of the universe is 

treated as a “fluid”. 

An observer in the universe is situated in an inertial system that is in free fall in the 

“cosmic fluid”. It is taken to be a perfect fluid, i.e. non viscous. The strong equivalence 

principle states that we cannot distinguish between free fall and the lack of a gravitational 

potential (locally in the free fall frame: 𝑔𝜇𝜈 = 𝜂𝜇𝜈). 

In general:   𝑇𝑖𝑘 = (𝜌 + 𝑝

𝑐2
)𝑢𝑖𝑢𝑘 − 𝑝

𝑐2
𝜂𝑖𝑘 

where 𝑢𝑖 is the four velocity of the cosmic fluid and 𝜂𝑖𝑘 is the local metric 

In the rest frame of the cosmic fluid: 𝑢𝑖 = (1,0,0,0) 

The equivalence principle tells us that space is curved the metric tensor needs to be 

used: 

 𝑇𝜇𝜈 = (𝜌 + 𝑝

𝑐2
)𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 

In the rest frame of the fluid this reduces to: 
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𝑇𝜇𝜈 =
1

𝑐2
 (

𝜌𝑐2 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

) 

 System of differential equations! 

In this inertial system the universe appears isotropic! 

 

The De Sitter model: 

What would a universe with vanishing Energy-momentum tensor look like? 

 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 − 𝛬𝑔𝜇𝜈 = 0 

 With the simplest general metric that adheres to the cosmological principle, 𝑔𝜇𝜈, and 

the cosmological constant 𝛬 we can find for the 00 and 11 component (calculate “metric 

connections”- Christoffel symbols, i.e. derivatives of metric tensor  𝑔𝜇𝜈) to get: 

3(𝑎̇
𝑎
)2 + 3𝑘

𝑎2
=𝛬  and  2(𝑎̈

𝑎
) + (𝑎̇

𝑎
)2 + 𝑘

𝑎2
=𝛬 

   From 00 compnonets  from 11,22 and 33 components 

 for 𝑘 = 0  &  𝛬 > 0 

𝐻2(𝑡) = 1

3
𝛬 = (𝑎̇

𝑎
)2    𝑎 = √

3

𝛬
𝑎̇   

 𝑎(𝑡) = 𝑒𝐻𝑡  with  𝐻 = √𝛬

3
   Inflation! 

This corresponds to negative pressure in energy momentum tensor in co-moving 

coordinates: 

𝑇𝜇𝜈
𝛬 = 1

𝑐2
 (

𝜌𝛬 0 0 0
0 −𝜌𝛬 0 0
0 0 −𝜌𝛬 0
0 0 0 −𝜌𝛬

)  where  𝜌𝛬 =
𝛬

8𝜋𝐺
 

 

The Standard Model of Cosmology 

In reality we have to account for the energy content of the universe 

 Include energy-momentum tensor for “cosmic fluid”! 
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𝑇𝜇𝜈 =
1

𝑐2
 (

𝜌𝑐2 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

) 

 Add term 8𝜋𝐺𝜌 to the 00 component. Here 𝜌 describes the total energy density of 

mass 𝜌𝑚 and radiation 𝜌𝑟𝑎𝑑. If we define 𝜌𝛬=𝜌𝑣𝑎𝑐 =
𝛬

8𝜋𝐺
 we obtain the  

 

Friedman equation 

(𝑎̇
𝑎
)2 + 𝑘

𝑎2
 = 
8𝜋𝐺

3
 𝜌𝑡𝑜𝑡  with  𝜌𝑡𝑜𝑡 = 𝜌𝑚  +𝜌𝑟𝑎𝑑 + 𝜌𝛬  

 

From equations of 11 & 22 & 33 components we obtain: 

2(
𝑎̈

𝑎
) + (

𝑎̇

𝑎
)2 +

𝑘

𝑎2
=− 8𝜋𝐺𝑝 

Further we can derive using some arithmetics involving Chistoffel symbols and free-fall 

frameboundary conditions: 

𝑝̇𝑎3 = 𝑑

𝑑𝑡
(𝑎3[𝜌 + 𝑝]) or 𝑑

𝑑𝑡
(𝜌𝑎3) = −𝑝 𝑑

𝑑𝑡
𝑎3 

 

Compare to first law of thermodynamics: 

𝑑𝑈 =  −𝑃 𝑑𝑉  Volume change 

Inner energy Pressure 

Equation of state:  𝑝 = 𝛼 𝜌 

 

  𝜌 = 𝑐𝑜𝑛𝑠𝑡 𝑎−3(1+𝛼) 

 

We know: 𝐸 = 𝑚𝑐2 

 There are two different energy densities: 

 (Relativistic) Radiation: 𝑣~𝑐 

 𝛼=1/3, as pressure is averaged over all directions 

 Non relativistic matter: 𝑣 ≪ 𝑐 

 𝛼 = 0, as matter does not exert pressure 

The energy densities of the two components are denoted 𝜌𝑟𝑎𝑑 and 𝜌𝑚 
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𝜌𝑚 ≫ 𝜌𝑟𝑎𝑑  𝜌 ∝ 𝑎−3 

𝜌𝑚 ≪ 𝜌𝑟𝑎𝑑  𝜌 ∝ 𝑎−4 

This is straight forward to interpret: 

In the first case: the energy density in a co-moving volume element does not change as the 

number of particles and their mass are constant. 

In the second case: the same applies for radiation, i.e. number of photons is not changing, 

however, their wavelength, does: additional factor 𝑎 due to red shift. 

It is easy to show:   𝑎(𝑡) ∝ 𝑡
2

3(1+𝛼) 

𝑎𝑟𝑎𝑑 ∝ √𝑡   for a radiation dominated universe 

𝑎𝑚 ∝ 𝑡
2
3   for a matter dominated universe 

 

6. The Expansion of the Universe 

We have seen (Hubble diagram) that all galaxies seem to be moving away from us and 

interpreted this as expansion of space. 

The apparent velocity with which objects are moving away from us: 

𝑣 = 𝑎̇

𝑎
𝑑 = 𝐻 𝑑  Hubble’s law, with   𝐻 = 𝑎(𝑡)̇

𝑎(𝑡)
 is often called Hubble’s constant for 𝑡0 

From Friedman equation and equation for 11, 22 and 33 components we get 

 
𝑎̈

𝑎
= −4𝜋𝐺

3
(𝜌 + 3𝑝) 

 

The present epoch seems matter dominated  

 𝑝~0  𝑎̈ < 0 , i.e. expansion should be decelerating (if we neglect 𝛬). 

We define the critical density: 

𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺
  

Today we have:  𝜌𝑐𝑟𝑖𝑡(𝑡0)~ 9·10−30 𝑔

𝑐𝑚3
 ~ 6 protons per 𝑚3. 

Using this we can re-write the Friedman equation: 

(
𝑎̇

𝑎
)2 +

𝑘

𝑎2
 = 
8𝜋𝐺

3
 𝜌𝑡𝑜𝑡 

𝐻2   +  
𝑘 

𝑎2
 = 𝐻2 𝜌𝑡𝑜𝑡

𝜌𝑘𝑟𝑖𝑡
  or 𝜌𝑡𝑜𝑡

𝜌𝑘𝑟𝑖𝑡
=  𝛺 = 1 + 𝑘

𝐻2𝑎2
  

  𝛺 − 1 =  𝑘

𝐻2𝑎2
  where 𝛺 =  𝛺𝑚 + 𝛺𝑟𝑎𝑑  +  𝛺𝛬 

This is a differential equation! It states that the form, i.e. geometry of the universe is 

determined by the total energy content: mass plus radiation plus cosmological constant. 
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16 
Introduction to Cosmology 

Sei zunächst  𝛬 = 0 →  𝛺𝛬 = 0    

 

For 𝛺 < 1      𝑘 = −1       open universe, expands forever        

For 𝛺 = 1      𝑘 =  0      open Euclidean universe, expansions stops                

For 𝛺 > 1      𝑘 = 1      closed universe, re-collapses    

Including the cosmological constant 𝛬 ≠ 0 complicates the situation.  

But let us remember: for universe that is dominated by cosmological constant, i.e. 

𝛺𝛬 ≫ 𝛺𝑚, 𝛺𝑟𝑎𝑑 we found 𝑎(𝑡) ∝ 𝑒
√𝛬
3
𝑡
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Introduction to Cosmology 

For all parameter combinations except for some with 𝛺𝛬 > 1 – which are excluded by 

observations – there was a time in the past with 𝑎 = 0, i.e. a singularity of space time 

 Big Bang model! 

Red Shift revisited cosmologically

 

We had interpreted the redshift of galaxies as being due to expansion of space while light is 

propagating from the source galaxy to the observer. 

The photon wavelength is growing as the co-moving volume element, ie is scaling with the 

scaling factor 𝑎. 

  𝜆𝑜𝑏𝑠
𝜆𝑒𝑚𝑖𝑡

=
𝑎𝑜𝑏𝑠

𝑎𝑒𝑚𝑖𝑡
 

Astronomically redshift is defined by 1 + 𝑧 = 𝜆𝑜𝑏𝑠
𝜆𝑒𝑚𝑖𝑡

=
𝑎𝑜𝑏𝑠

𝑎𝑒𝑚𝑖𝑡
.  

The redshift of astronomical objects is quantified by 𝑧. 

Measurement of cosmological redshift usually happens by identifying the 21cm line of 

galactic hydrogen clouds or the Lyman-α line at 1216 å. 

For example: galaxy identified in Nature 467(210)940  

detection of the Lyman-α at 11615.6±2.4    𝑧 = 11615.6

1216
-1 = 8.55 

A co-moving line element of 1m today had an extension of 𝑎𝑒𝑚𝑖𝑡 = 
𝑎𝑜𝑏𝑠
(1+𝑧)

= 10.5 cm  

when the light observed today was emitted. 

 


