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Muon Collider

Why Build a Muon Collider?

Advantages over the electron: Disadvantages:

Psynchrotron goes as 1/m*. Muon decay time (2.2 ps)
my =200 me => P, =107 P,
meaning: meaning:
higher energies, smaller machines Fast schemes for beam preparation required

Advantages over the proton:
Muon is a pointlike particle
meaning:
higher precision
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Muon Collider  Collider Front End
Frictional Cooling Beam Cooling
FCD Experiment
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Muon Collider Collider Front End

Muon Production

Multi-Megawatt proton beam produces pions in target

and drift
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Muon Collider Collider Front End

Muon Production

Multi-Megawatt proton beam produces pions in target

Strong magnetic field (20 T) captures pions
Pions drift, decay to muons.

PROTON BUNCH MAGNET

TARGET MAGNET
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Muon Collider Collider Front End

Muon Production

Multi-Megawatt proton beam produces pions in target

Strong magnetic field (20 T) captures pions
Pions drift, decay to muons.

Both * and 1 are created,

decaying to p* and p-
producing both beams necessary for the collider.

and drift
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Muon Collider
Beam Cooling

Luminosity & Emittance

Event Rate = Luminosity X Cross Section
L = fN?2/4m1ox0,

Emittance = beam’s size in phase space
£6p,N = six dimensional normalized emittance
= 0x0y070px0pyTpz / (TT mc)? [Assuming no correlations]

Example parameter set for a pC with a 3 TeV center-of-mass energy:

Bunches/fill 4
Rate 15 Hz
p/bunch 2 x 102

for a

Luminosity 7 x 1034 ¢m2 57!
one requires

€6D,N 2 x 100 (rrm)3

After the pion decay channel, the muon beam has:
€6p,N = (5ecm)(5cm)(10m)(50MeV/c)(50MeV/c)(100MeV/c)
=2 x 104 (rrm)3

6 orders of magnitude in emittance reduction (“cooling”) is needed.
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Concept
Frictional Cooling

Frictional Cooling Concept

Frictional cooling is the bringing of charged particles to an equilibrium energy by the balancing of energy loss to a medium
with energy gain from an electric field

In order to be cooled, muons must be in the low-energy energy region, where stopping power goes as (T)'/2 and a stable
equilibrium energy can be established.
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Because the stopping power is very large around Teq, the density of the medium must be low; we use a gas.
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Frictional Cooling  Scheme

Cooling Medium
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Muon Collider  Concept
Frictional Cooling  Scheme
FCD Experiment  Simulation

Cooling Cell
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Frictional Cooling
Simulation

First Simulation + Experiment

The front end scheme and this cooling scheme were simulated
(arXiv: physics/0410017)

An emittance of gspn = 3 x 10" (1Tm)® was acheived,

approximately 5 times better than what is needed
forL=7 x 1034 cm2 s°!

The yield was 0.002 p*/p

unfortunately 5 times lower than what was aimed for,
but balances with the 5 times better emittance

New Simulation at MPP: CoolSim

More flexible geometry control:
Easier optimization of scheme components
Testing of new schemes

New physics at low energy:
Charge Exchange / Effective Charge / Neutralization
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Construction

FCD Experiment
Frictional Cooling Demonstration Experiment

Motivated by the promising results of the first simulations, The FCD experiment at the MPP aims to test the basic

an experimental verification of frictional cooling using a principle behind frictional cooling, also using protons. The
proton beam was undertaken at Nevis Labs, Columbia experiment has been designed to avoid the use of
University (arXiv: physics/0311059) windows.

Unfortunately, too-thick exit windows on the cooling cell The proton source and detector are both mounted inside
prevented cooled protons from exiting the experiment, the cooling cell.
and frictional cooling was not observed.
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Construction

FCD Experiment
Proton Source

Alpha particles pass through a mylar foil, breaking the
bonds between carbon and hydrogen, leaving the

ionized hydrogen free to be accelerated away by the
electric field in the cell.

241 Americium
Emitter)

D Greenwald
Friday, January 15, 2010

MPP Munich, January 15, 2010



Muon Collider ~ Construction
Frictional Cooling  Simulation
FCD Experiment Recent Data

Experimental Setup
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Simulation
FCD Experiment

Proton Source

Simulation of the FCD cooling cell was made in CoolSim
for the range of interesting pressures and electric fields
that can be reached in the lab

The simulation determines the mean energy of the protons It also calculates the mean energy of the protons at the
as a function of distance traveled in the gas cell. detector plane (z=10cm) as a function of the electric field

strength and the gas pressure.
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FCD Experiment Recent Data

Most Recent Data

We aim to compare the simulation results from the
previous slide to data from the lab.

Proton energy specira have been measured for various These measurements confirm the production of protons at
strengths of the electric field, with the gas cell evacuated the source and allow us to calibrate the detector’s
response to protons.
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Status & Future

The experiment construction has been successfully commissioned:

the accelerating grid runs reliably, without breakdown between rings, at voltages up to at least
65 kV (0.65 MV/m) with an evacuated gas cell and at voltages below 50 kV (0.5 MV/m)
for gas pressures between 103 mbar and 1250 mbar.

the gas cell can hold steady pressures of Helium gas from 1072 mbar to 1250 mbar,

the proton source is constructed and operating
detector response is well understood
Current Issues:
increases of detector leakage current
operation of the detector in helium gas
Once these are resolved, we will measure proton energy spectra for various strengths of the electric

field and densities of the gas. These spectra will be compared to those that have been caclculated
from the Monte Carlo simulations.
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Proton Source Simulation
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Detector Characterization
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Etfective charge

qeft = (2qoif)/(Z0)
oif = cross section for change from charge qi to gf
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Muonium formation in Hydrogen

Muonium ionization in Hydrogen
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Collider Comparison

......

-----------
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Muon Collider  Construction
Frictional Cooling  Simulation
FCD Experiment Recent Data

Fermilab’s idea

Muon Collider P
Conceptual Layout y D

Project X o
Accelerate hydrogen ions to 8 GeV e
using SRF technology. e

Compressor Ring Maath
Reduce size of beam. i j

Target
Collisions lead to muons with energy
of about 200 MeV.

Muon Capture and Cooling
Capture, bunch and cool muons to
create a tight beam.

Initial Acceleration
In a dozen turns, accelerate muons

to 20 GeV.

Recirculating Linear Accelerator
In a number of turns, accelerate

muons up to 2 TeV using SRF \

technology.

Collider Ring N\ ) Fermilab Site
Bring positive and negative muons \ W )
into collision at two locations 100 N /

meters underground. \ e
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