Neutral Current Measurements at High Q² in the H1 Experiment at HERA

ep scattering @ 200 MeV

- Hofstadter and McAllister, LINAC Stanford, 1955
- 100 250 MeV e⁻ beams, protons at rest
- Elastic scattering
- Magnetic spectrometer
- Measurement of scattering angle and energy of electron

Proton has structure !

Empiric dipole form-factor fits well 2

S.Shushkevich, MPIM

NC at H1

QPM @ 20 GeV

• Taylor, Kendall, Friedman, SLAC Stanford, 1967

• 20 GeV e⁻ beams, protons at rest

• Inclusive measurement

First evidence for the scattering on the point-like partons inside a proton

Inclusive Deep Inelastic Scattering

E' and θ fully determine kinematics (at proton rest frame)

Include hadronic measurements to improve the result

S.Shushkevich, MPIM

NC at H1

The HERA ep collider at DESY (Hamburg)

15 years of data taking

√s ≈ 320 GeV

 Q^2 up to $10^5 \,GeV^2/c^2$ $\lambda_{min} \sim R_p/1000$

e

p

Main components of the H1 detector

ep scattering in general form

Cross section for the ep scattering is $~~d\sigma \propto L^e_{\mu
u} W^{\mu
u}_{had}$

where (the most general form)

$$\begin{split} W^{\mu\nu} &= -g^{\mu\nu}W_1 + \frac{1}{m^2}W_2 - ie^{\mu\nu\alpha\beta}p_\alpha q_\beta \frac{1}{2m^2}W_3 \\ &\quad + q^\mu q^\nu \frac{1}{m^2}W_4 + (p^\mu q^\nu + q^\mu p^\nu) \frac{1}{m^2}W_5 + i(p^\mu q^\nu - p^\mu q^\nu) \frac{1}{2m^2}W_6 \\ &\quad \text{and} \ W_i = W_i(x,Q^2) \end{split}$$

ep scattering in general form

Cross section for the ep scattering is $~~d\sigma \propto L^e_{\mu
u} W^{\mu
u}_{had}$

S.Shushkevich, MPIM

NC at H1

eµ scattering (a reminder)

Start from the matrix element

$$\mathbf{M} = i \frac{ee'}{q^2} [\bar{u}\gamma_{\mu}u] [\bar{v}\gamma^{\mu}v]$$

Average initial spin states, sum final states

$$\frac{1}{4} \sum_{spins} |M|^2 = \frac{e^2 {e'}^2}{q^4} (L_e^{\mu\nu} L_{\mu\nu}^{muon}) = \frac{e^2 {e'}^2}{q^4} \cdot 2(s^2 + u^2)$$

Substitute $\frac{u}{s} = y - 1$ $\frac{1}{4} \sum_{spins} |M|^2 = \frac{e^2 {e'}^2}{Q^4} 2s^2 [1 + (1 - y)^2]$

Finally (with phase space and flux factors)

$$\frac{d\sigma}{dy} = \frac{e^2 {e'}^2}{8\pi Q^4} [1 + (1-y)^2]s$$

ep scattering in QPM

QPM

- incoherent scattering of the lepton
 on the partons of the proton
- parton momentum: p' = xp

Parton changes

ep scattering in QPM

QPM

- incoherent scattering of the lepton
 on the partons of the proton
- parton momentum: p' = xp

Parton changes

Parton Distribution Function

F₂ & F_L (and something else)

QPM

Proton structure functions

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[1 + (1-y)^2\right] \sum_i e_i^2 xq_i(x) \qquad \frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[(1 + (1-y)^2)F_2(x,Q^2) - y^2F_L(x,Q^2)\right]$$

• Meaning of
$$F_2(x,Q^2) = \sum_i e_i^2 x q_i(x)$$

• Bjorken scaling $F_2(x,Q^2) = F_2(x)$

• Callan-Gross relationship
$$F_L(x,Q^2) = 0$$

scattering on spin- $\frac{1}{2}$ partons

How F₂ could look like

Point-like proton

Just 3 static valence quarks

3 valence quarks and gluons

Real quark-gluon structure (valence + sea + gluons)

F₂ results

F₂ results

PDFs

Universality: factorization theorem

$$\sigma_{DIS} \propto \hat{\sigma} \otimes \mathrm{pdf}(x)$$

 $\hat{\sigma}$ - perturbative QCD cross-section pdf(x) - universal parton distribution functions

Measure in ep collisions (HERA) use in pp collisions (LHC)

F_L is beyond QPM

pure QCD effect

$$F_L(x,Q^2) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left[\frac{8}{3} \left(\frac{x}{\xi} \right)^2 F_2(x,Q^2) + 4 \left(\sum e_i^2 \right) \left(\frac{x}{\xi} \right)^2 \left(1 - \frac{x}{\xi} \right) \xi g(\xi,Q^2) \right]$$
E proper the eluon distribution

 F_L probes the gluon distribution

F_L extraction

Measure σ at 3 different proton energies E_p = 460, 575, 920 GeV

F_L results

QCD predictions are in a good agreement with the measurement @ $Q^2 > 10 \text{ GeV}^2$

xF_3 appears at high Q^2

Z boson exchange accounts at $Q^2 pprox M_Z^2$ (modification of the lepton tensor)

S.Shushkevich, MPIM

i

NC at H1

xF₃ results

$$\tilde{\sigma}_{NC}(e^{\pm}p) = F_2 \mp \frac{Y_-}{Y_+} x F_3$$

$$x\tilde{F}_{3} = \frac{Y_{+}}{2Y_{-}} [\tilde{\sigma}_{NC}^{-}(x,Q^{2}) - \tilde{\sigma}_{NC}^{+}(x,Q^{2})]$$

xF₃ results

Dominant contribution is from γZ interference term

$$xF_3^{\gamma Z} \approx x\tilde{F}_3 \cdot \frac{Q^2 + M_Z^2}{Q^2} \cdot \frac{4\sin^2\Theta_W \cos^2\Theta_W}{a_e}$$

Log Q² dependence (small) => different Q² points could be transported to the same Q² to increase statistics

\cdot F2, FL, xF3 - the most general description of the proton structure

- All three are measured in H1
- This allows to investigate proton and verify QCD predictions and determine PDFs with QCD