The $Z \to \tau \tau \to lh$ $(l = e, \mu)$ analysis with ATLAS detector with early data

D. Capriotti, S. Horvat, H. Kroha

Max Planck Institut fuer Physik Werner Heisenberg Institut Muenchen, 80805, Germany capriott@mppmu.mpg.de

February 12, 2010

IMPRS colloquium

Overview

- Introduction
- Tau Reconstruction and Identification with the ATLAS detector
- The $Z \to \tau \tau$ analysis with 10 TeV data
- Conclusion

Introduction

D. Capriotti (MPI)

Introduction

Taus as tools in many areas:

Understanding of the Detector:

- measurement of the τ Energy Scale
- measurement of the τE_T^{miss} Scale

Standard Model (SM):

- Measurement of W/Z Production Cross Section
- Discovery of the Higgs Boson in $\tau\tau$ final state

Minimal Supersymmetric Standard Model (MSSM):

- $h/H/A \rightarrow \tau \tau$ excellent discovery potential
- Searches for Charged Higgs Bosons: $H^{\pm} \to \tau \nu$

Basic Tau Properties

TAU BRANCHING RATIOS

- Leptonic Decay Modes (35%): $e\nu_e\nu_\tau$ 18% $\mu\nu_\mu\nu_\tau$ 17%
- 1 Prong Hadronic Decay Modes (47%):

$\pi^- \nu_{\tau}$	11%
$\pi^-\pi^0\nu_{ au}$	25%
$\pi^-\pi^0\pi^0\nu_{ au}$	9%
$\pi^-\pi^0\pi^0\pi^0\nu_\tau$	1%
$K^- + Neutrals$	1.5%

• 3 Prong Hadronic Decay Modes (15%):

$\pi^-\pi^+\pi^-\nu_\tau$	9%
$\pi^-\pi^+\pi^-\pi^0\nu_\tau$	4.5%
$K^-\pi^+\pi^-\nu_\tau$	0.4%

• Other Modes ($\approx 3\%$)

TAU CHARACTERISTICS

- $m_\tau \approx 1.7 \text{ GeV}$
- $c\tau = 87 \ \mu \mathrm{m}$
- Hadronic Decays are well collimated collection of charged and neutral pions/kaons
- Most have 1 or 3 charged tracks
- Leading pions direction reproduces τ direction well

Tau Reconstruction and Identification with the ATLAS detector

The ATLAS detector at LHC

Tau Reconstruction in ATLAS

- \Rightarrow Because leptonic tau decays cannot really be separated from electrons and muons, we say tau reconstruction and ID to refer to hadronically decaying tau leptons.
- \Rightarrow We try to distinguish between 1-prong and 3-prong tau decays (neglect 5-prong).
- $\Rightarrow~$ The reconstruction of tau leptons is understood as a reconstruction of the hadronic $\tau\text{-decay}$ modes.

Track seed Algorithm

- seed track with $p_T > 6 \ GeV$ with good quality criteria,
- 2 association with other tracks in $\Delta R < 0.2$ with quality criteria,
- **(a)** total charge |Q| = 1.
- energy flow algorithm

Calo seed Algorithm

- **2** tracks associated if $\Delta R < 0.3$, passing minimal quality criteria,

Calo + **Track seeds** matched if $\Delta R < 0.2$

Tau Identification with early data

How can we distinguish τ -jets from QCD jets?

Optimizing the rejection/efficiency of-ID in Monte Carlo is interesting but data will be a much different story!

- proper MC modeling of variables is going to be inaccurate
- many variables require precision alignment/calibration before they are effective (secondary vertexing, track impact parameters, hadronic calibration)
- many variables will have different behaviour due to underlying event and pile-up (track and calorimeter isolation with wide cones)

For early data - can try to use only variables suspected to be under control with tens/hundreds of pb^{-1} . Try to avoid using multi-variate techniques, and use rectangular cuts instead. ATLAS looked at optimization of rectangular cuts on a set of "safe variables".

Tau Identification with early data: Safe Identification

- "Safe-variables" to identify τ 's in the early data (Safe \Rightarrow small sensitivity to systematic uncertainties).
- not used variables based on: precision tracking, π^0 reconstruction ...

Variables for "Safe ID Cut"

- electromagnetic radius Rem
- transverse energy width in the η strip layer
- isolation in the calorimeter
- Ratio of EM energy and total energy
- \rightarrow Width of track momenta
- \rightarrow Ratio E_T and p_T of the leading track
- \rightarrow Ratio of EM energy and the total p_T of tracks
- $\rightarrow~$ Ratio of hadronic energy and the total p_T of tracks
- \rightarrow Ratio of total p_T of the tracks and the total energy (only for 3-p)

Taujet efficiency and QCD jet rejection

- *tight, medium, loose* cuts corresponding to 0.3, 0.5, 0.7 identification efficiency
- Identification performed for 5 p_T bins (10-25 GeV, 25-45 GeV, 45-70 GeV, 70-100 GeV, > 100 GeV) separately for 1-prong or 3-prong canditates.

D. Capriotti (MPI)

 $Z \rightarrow \tau \tau$ analysis

February 12, 2010 11 / 22

The $Z \rightarrow \tau \tau$ Selection

D. Capriotti (MPI)

$Z \to \tau \tau$ in early data

Motivation for $Z \to \tau \tau$ in early data:

Understanding of the Detector:

- $\tau \tau$ invariant mass sensitive to the τE_T^{miss} Scale
- $\tau\tau$ visible invariant mass sensitive to the τE_T Scale

Standard Model (SM) and Minimal Supersymmetric Standard Model (MSSM):

- Dominant background for Higgs Boson in $\tau\tau$ final state
- Background for MSSM $\tau\tau$ final states

	σ (nb)	ϵ_{filter}	Nr. events for 100 pb^{-1}
$Z \rightarrow \tau^+ \tau^-$	1.128 (LO)	1	112800
$Z \rightarrow e^+e^-$	1.144 (LO)	0.96	109824
$Z \rightarrow \mu^+ \mu^-$	1.144 (LO)	0.96	109824
$W \rightarrow e\nu_e$	11.765 (LO)	0.88	103532
$W \rightarrow \mu \nu_{\mu}$	11.765 (LO)	0.88	1035320
$W \rightarrow \tau_{lep} \nu_{\mu}$	4.148 (LO)	0.87	360876
$W \rightarrow \tau_{had} \nu_{\mu}$	7.690 (LO)	1	769000
tī	0.374 (NLO)	0.55	20570
QCD dijet (1e filter) p_T 17-35 GeV	$8.668 \cdot 10^5$	$1.09 \cdot 10^{-3}$	$94.5 \cdot 10^{6}$
QCD dijet (1e filter) p _T 35-70 GeV	$5.601 \cdot 10^4$	$5.45 \cdot 10^{-3}$	$30.5 \cdot 10^{6}$
QCD dijet (1 μ filter) p_T 17-35 GeV	$8.668 \cdot 10^5$	$1.02 \cdot 10^{-3}$	88.4.10 ⁶
QCD dijet (1 μ filter) p_T 35-70 GeV	$5.601 \cdot 10^4$	$5.11 \cdot 10^{-3}$	$28.6 \cdot 10^{6}$

Presented analysis performed with 10 TeV in order to deal with early data (100 pb^{-1}).

Selection of the $Z \to \tau \tau \to lh$ signature

Medium Electrons

- $p_T > 15 \ GeV, \ |\eta| < 2.5 \ \text{and} \ |Q| = 1$
- Identification flag: medium
- Isolation: E_T (in cone 0.40) / $p_T < 0.12$.

Combined muons

- $p_T > 15 \ GeV, \ |\eta| < 2.5 \ \text{and} \ |Q| = 1$
- Identification: combined (Inner Tracker + Muon Spectrometer)
- Isolation: E_T (in cone 0.40) / $p_T < 0.10$ and no tracks in cone 0.40.

TauJets

- $E_T > 20 \ GeV, \ |\eta| < 2.5 \ \text{and} \ |Q| = 1$
- ${lackbdash}$ Tau identification with safe variables tight.
- Remove Overlap between taujets and combined muons (and medium electron) in dR < 0.3
- Electron veto

Efficiency after selection criteria on the left

Efficiency after selection criteria on the left

Signal Selection

- \Rightarrow Combining 1 taujet and 1 lepton (e, μ) with opposite charge (OS)
- \Rightarrow Cut on the transverse invariant mass $m_T^{lep,miss}$ (to reduce $W \rightarrow e(\mu) \nu$ background)
- $\Rightarrow\,$ Cut on the collinearity between lepton and missing energy (to reduce $W\to e(\mu)\nu$ background)
- ⇒ Cut on the ΔR between lepton and taujet (to reduce $W \rightarrow e(\mu)\nu$ background)
- \Rightarrow Cut on the maximum p_T of the lepton (to reduce $Z \rightarrow ee$ background)
- \Rightarrow Background control with same-sign (τ , lepton) selection (SS).

Transverse Invariant Mass

- $\bullet\,$ Transverse Invariant Mass lepton + missing energy:
 - $m_T = \sqrt{2p_T^{lep}} E_T^{miss} (1 \cos \phi_{lep,miss})$

• $m_T^{lep,miss} < 50 \ GeV$ for the analysis

Angular Correlation

• Angular Correlation: $\Delta \psi = \cos(\phi_{lep} - \phi_{miss}) + \cos(\phi_{jet} - \phi_{miss})$

• $\Delta \psi > -0.15$

Distance between lepton- τ_{jet}

• Distance between the two visible particles: $\Delta R = \sqrt{\Delta \phi^2 + \Delta \theta^2}$

• $2.14 < \Delta R_{lep,\tau jet} < 4.14$ for the analysis

Reconstruction of the $\tau\tau$ invariant mass: the Collinear Approximation

- The Collinear Approximation assumes that the τ -decay products are collinear to the τ direction
- This approximation is a good approximation when the parent particle is heavily boosted.
- It breaks down when the decay daughters are back-to-back (as most of the signal events)
- ⇒ The presence of the $Z \rightarrow \tau \tau$ signal can be estimated through the visible invariant mass, *i.e.* the invariant mass of the electron (muon) and the taujet.

Results for the $Z \to \tau \tau \to e \tau_{jet}$ analysis

	$Z \rightarrow \tau^+ \tau^-$	$Z \rightarrow e^+ e^-$	$W \rightarrow e\nu$	$W \rightarrow \tau_l \nu$	$W \rightarrow \tau_h \nu$	tī	QCD
Presel $1e+1\tau_{jet}$	450 ± 7	416 ± 11	772 ± 22	52 ± 7	6 ±3	91 ± 2	235 ± 46
OS							
$1e+1\tau_{jet}$	442±7	354 ± 10	580 ± 19	37 ± 6	4±3	79 ± 2	120 ± 33
$m_T^{e,miss} < 50 \text{ GeV}$	431±7	337 ± 10	141 ± 10	31 ± 5	4 ± 3	24 ± 1	120 ± 33
angular correl > -0.15	408 ± 7	248 ± 8	50 ± 6	17 ± 4	2 ± 2	19 ± 1	86 ± 22
$2.1 < \Delta R < 4.1$	368 ± 7	232 ± 8	43 ± 6	14 ± 4	2±2	9 ± 1	73 ± 19
$p_T^{ele} < 35 \text{ GeV}$	330 ± 6	71 ± 4	20 ± 4	9 ± 3	2 ± 2	3.0 ± 0.4	71 ± 19
$p_T^{\tau jet} < 60 \text{ GeV}$	326 ± 6	65 ± 4	18 ± 3	8±3	2 ± 2	2.7 ± 0.3	69 ± 19
$35 < M_{vis} < 80 ~GeV$	317 ± 6	11 ± 2	16 ± 3	6±2	2±2	1.7 ± 0.3	60 ± 18
SS							
$1e+1\tau_{jet}$	7±1	62 ± 4	192 ± 11	15 ± 4	2±2	12 ± 1	115 ± 32
$m_T^{e,miss} < 50 \text{ GeV}$	7±1	57 ± 4	35 ± 5	8±3	2±2	4.0 ± 0.4	114 ± 32
angular correl > -0.15	5 ± 1	41 ± 3	18 ± 3	3±2	<1.6	3.3 ± 0.4	84 ± 23
$2.1 < \Delta R < 4.1$	4±1	30 ± 3	12 ± 3	2 ± 1	<1.6	1.7 ± 0.4	66 ± 17
$p_T^{ele} < 35 \text{ GeV}$	3±1	8±1	7 ± 2	2 ± 1	<1.6	0.3 ± 0.1	64 ± 17
$p_T^{\tau jet} < 60 \text{ GeV}$	3±1	8±1	7 ± 2	2 ± 1	<1.6	0.3 ± 0.1	62 ± 17
$35 < M_{mis} < 80 ~GeV$	2±1	4 ± 1	5 ± 2	2 ± 1	<1.6	0.2 ± 0.1	55 ± 16

- QCD dijet is the dominant background
- Data-driven estimation of the QCD Opposite Sign background from the Same Sign selection

Results for the $Z \to \tau \tau \to \mu \tau_{jet}$ analysis

	$Z \rightarrow \tau^+ \tau^-$	$Z \rightarrow \mu^+ \mu^-$	$W \rightarrow \mu \nu$	$W \rightarrow \tau_l \nu$	$W \rightarrow \tau_h \nu$	$t \bar{t}$	QCD
Presel $1\mu + 1\tau_{jet}$	600 ± 8	143 ± 6	906 ± 24	62 ± 8	<1.6	97 ± 2	179 ± 37
OS							
$1\mu+1\tau_{jet}$	590 ± 8	102 ± 5	689 ± 21	47 ± 7	<1.6	84±2	95 ± 28
$m_T^{\mu,miss} < 50 \text{ GeV}$	573±8	74 ± 4	157 ± 10	36 ± 6	<1.6	24 ± 1	95 ± 28
angular correl > -0.15	537 ± 8	49 ± 3	55 ± 6	18 ± 4	<1.6	19 ± 1	67 ± 19
$2.1 < \Delta R < 4.1$	489 ± 8	43 ± 3	46 ± 6	17 ± 4	<1.6	9 ± 1	55 ± 16
$p_T^{ele} < 35 \text{ GeV}$	444±7	14 ± 2	26 ± 4	15 ± 4	<1.6	3.4 ± 0.4	54 ± 16
$p_T^{\tilde{\tau}jet} < 60 \text{ GeV}$	440 ± 7	13 ± 2	25 ± 4	13 ± 3	<1.6	2.8 ± 0.3	53 ± 16
$35 < M_{vis} < 80 ~GeV$	430 ± 7	10 ± 1	22 ± 4	12 ± 3	<1.6	2.0 ± 0.3	48 ± 15
SS							
$1\mu+1\tau_{jet}$	10 ± 1	41 ± 3	216 ± 12	15 ± 4	<1.6	12 ± 1	84 ± 24
$m_T^{\mu,miss} < 50 \text{ GeV}$	10 ± 1	27 ± 2	49 ± 6	9 ± 3	<1.6	4.6 ± 0.4	84 ± 24
angular correl > -0.15	7±1	17 ± 2	22 ± 4	5 ± 2	<1.6	3.4 ± 0.4	59 ± 17
$2.1 < \Delta R < 4.1$	6 ± 1	13 ± 2	18 ± 4	3 ± 2	<1.6	1.8 ± 0.4	48 ± 14
$p_T^{ele} < 35 \text{ GeV}$	5 ± 1	4±1	7 ± 2	3 ± 2	<1.6	0.4 ± 0.1	48 ± 14
$p_T^{\tau jet} < 60 \text{ GeV}$	4±1	4 ± 1	6±2	$_{3\pm 2}$	<1.6	0.3 ± 0.1	47 ± 13
$35 < M_{mis} < 80 \ GeV$	4±1	3 ± 1	5±2	3±2	<1.6	0.3 ± 0.1	42 ± 13

- QCD dijet is the dominant background
- Data-driven estimation of the QCD Opposite Sign background from the Same Sign selection

Conclusion

- LHC plans:
 - a) from February 14th 2010: collecting 1 fb^{-1} at 7 TeV
 - b) end of 2011: shutdown for machine upgrade for 14 TeV collisions
- $Z \to \tau \tau$ analysis optimized for early data (100 pb^{-1}): good identification of the τ -jets over the QCD background
- Data driven estimation of the QCD background from the Same Sign selection
- Extend the analysis to the Z + jet final state (dominant background for SM Higgs searches in the $\tau\tau$ final state)