

Constraining the see-saw with $\mu ightarrow e \gamma$

Cristoforo Simonetto

IMPRS Colloquium, February 12 2010

Outline

The see-saw

- Motivation
- Mechanism

2 Supersymmetry

- Motivation
- Basics of the *v*MSSM
- Generation of $(m_L^2)_{21}$ via the RGEs
- $\bigcirc \mu \to e\gamma$
 - $\mu \rightarrow e \gamma$ in the $\nu {
 m MSSM}$
 - Experimental status
- 4 Constraints on the see-saw

5 Summary

Experiment

Neutrino mixing \Rightarrow small neutrino masses

Theory

Asymmetry in the particle contentQuarksLeptons \overline{Q} $(3, 2, \frac{1}{6})$ L $(1, 2, -\frac{1}{2})$ \overline{d} $(\overline{3}, 1, \frac{1}{3})$ \overline{e} (1, 1, 1) \overline{u} $(\overline{3}, 1, -\frac{2}{3})$ \overline{e} (1, 1, 1)

Experiment

Neutrino mixing \Rightarrow small neutrino masses

Theory

Asymmetry in the particle content	
Quarks	Leptons
$\begin{array}{c c} Q & (3,2,\frac{1}{6}) \\ \bar{d} & (\bar{3},1,\frac{1}{3}) \\ \bar{u} & (\bar{3},1,-\frac{2}{3}) \end{array}$	$\begin{array}{c c c} L & (1,2,-\frac{1}{2}) \\ \bar{e} & (1,1,1) \\ \bar{\nu} & (1,1,0) \end{array}$

Experiment

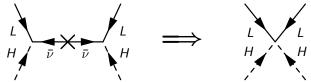
Neutrino mixing \Rightarrow small neutrino masses

Theory

Asymmetry in the particle content

Quarks Leptons

$$\begin{array}{c|c|c} Q & (3,2,\frac{1}{6}) \\ \bar{d} & (\bar{3},1,\frac{1}{3}) \\ \bar{u} & (\bar{3},1,-\frac{2}{3}) \end{array} \begin{array}{c|c} L & (1,2,-\frac{1}{2}) \\ \bar{e} & (1,1,1) \\ \bar{\nu} & (1,1,0) \end{array}$$


- U(1) charges such that Yukawa couplings are possible
- $\bar{
 u}$ is necessary for a complete $\mathrm{SO}(10)$ representation

Mechanism

• The most general Lagrangian

$$\begin{split} \mathcal{L}^{\text{int}} &= + \, \bar{d} \mathbf{Y}_{\mathsf{d}} Q H^* + \bar{\nu} \mathbf{Y}_{\mathsf{u}} Q H \\ &+ \bar{e} \mathbf{Y}_{\mathsf{e}} L H^* + \bar{\nu} \mathbf{Y}_{\nu} L H - \frac{1}{2} \bar{\nu} \mathbf{M} \bar{\nu}^{\mathsf{T}} + \text{h.c} \end{split}$$

- ullet Right-handed neutrino mass f M naturally much larger than EW scale $\left< H^0 \right>$
- Effective description

At tree level

$$\bar{\nu}\mathbf{Y}_{\nu}LH - \frac{1}{2}\bar{\nu}\mathbf{M}\bar{\nu}^{T} \longrightarrow -\frac{1}{2}H^{*}L^{T}\mathbf{Y}_{\nu}^{T}\mathbf{M}^{-1}\mathbf{Y}_{\nu}LH$$

Phenomenology

The see-saw mass formula

To break EW symmetry, the Higgs gets a vev $\langle H^0 \rangle$. It results a (left-handed) neutrino mass

$$\mathcal{L}_{\mathrm{eff}}^{\mathrm{int}} \supset -\frac{1}{2} \nu_{L}^{T} \left\langle \mathcal{H}^{0} \right\rangle^{2} \mathbf{Y}_{\boldsymbol{\nu}}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\boldsymbol{\nu}} \quad \nu_{L} \equiv -\frac{1}{2} \nu_{L}^{T} \mathbf{m}_{\boldsymbol{\nu}} \quad \nu_{L}$$

Phenomenology

The see-saw mass formula

To break EW symmetry, the Higgs gets a vev $\langle H^0 \rangle$. It results a (left-handed) neutrino mass

$$\mathcal{L}_{\mathrm{eff}}^{\mathrm{int}} \supset -\frac{1}{2}\nu_{L}^{T} \left\langle \mathcal{H}^{0} \right\rangle^{2} \mathbf{Y}_{\boldsymbol{\nu}}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\boldsymbol{\nu}} \quad \nu_{L} \equiv -\frac{1}{2}\nu_{L}^{T} \mathbf{m}_{\boldsymbol{\nu}} \quad \nu_{L}$$

Discussion

- The (left-handed) neutrino mass is the only effect $\propto rac{1}{M}$
- $\frac{2}{3}$ of the neutrino mass matrix \mathbf{m}_{ν} have been determined experimentally
- Other fermion masses $\propto \mathbf{Y} \langle H^0 \rangle$, neutrino mass $\propto \frac{1}{M} \mathbf{Y}^2 \langle H^0 \rangle^2$ \Rightarrow Neutrinos are naturally much lighter
- Neutrino oscillation $\Rightarrow 10^{-2} \text{ eV} \leq \mathbf{m}_{\mu} \leq 1 \text{ eV} \leftarrow \text{Tritium decay}$
- $\bullet~$ For $\bm{Y_\nu}\sim 1$ it follows $10^{13}~{\rm GeV}\lesssim \bm{M}\lesssim 10^{15}~{\rm GeV}$
- BUT: Higgs is naturally as heavy as the heaviest particle

Outline

- The see-saw
 - Motivation
 - Mechanism

2 Supersymmetry

- Motivation
- Basics of the *v*MSSM
- \bullet Generation of $(m_L^2)_{\rm 21}$ via the RGEs
- 3 $\mu
 ightarrow e \gamma$
 - $\mu \rightarrow e \gamma$ in the νMSSM
 - Experimental status
- 4 Constraints on the see-saw
- 5 Summary

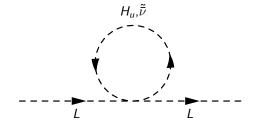
In the context of the see-saw

- See-saw works as in the SM
- SUSY is the only (viable, calculable) theory valid to high scales with a (technically) natural light Higgs
- The see-saw can lead to more effects

In general

- Only possibility to combine space-time and internal symmetries
- Gauge coupling unification
- Dark matter candidate

Basics of the ν MSSM


• double field content + second Higgs doublet

fermion	scalar
$Q, \bar{d}, \bar{u}, L, \bar{e}, \bar{\nu}$	$ ilde{Q}, ilde{ar{d}}, ilde{ar{u}}, ilde{L}, ilde{ar{e}}, ilde{ar{ u}}$
\tilde{H}_d, \tilde{H}_u	H_d, H_u
$ ilde{g}, ilde{W}^{\pm}, ilde{W}^{0}, ilde{B}$	g, W^{\pm}, Z^0, γ

- SUSY couplings can be derived from SM couplings
- SUSY couplings depend on the breaking mechanism
- In the following we will focus on SUSY scalar masses $\tilde{L}^{\dagger}m_{L}^{2}\tilde{L}$, $\tilde{e}m_{e}^{2}\tilde{e}^{\dagger}$, $\tilde{\nu}m_{\nu}^{2}\tilde{\nu}^{\dagger}$, ...
- \bullet Usual assumption $m_L^2,\,m_e^2,\,m_\nu^2,\ldots\propto 1$ at SUSY scale to satisfy constraints from flavor physics

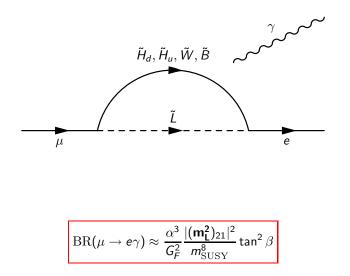
Generation of $(\mathbf{m}_{L}^{2})_{21}$ via the RGEs

If SUSY is mediated at a scale $\Lambda \gtrsim M$

$$\mathbf{m}_{\mathsf{L}}^{2}(\text{below }\mathsf{M}) \approx \mathbf{m}_{\mathsf{L}}^{2}(\Lambda) - \frac{2}{16\pi^{2}} \left[\mathbf{m}_{\mathsf{L}}^{2}(\Lambda) + \mathbf{m}_{\nu}^{2}(\Lambda) + \mathbf{m}_{\mathsf{H}_{u}}^{2}(\Lambda)\right] \mathbf{Y}_{\nu}^{\dagger} \log\left(\frac{\Lambda}{\mathsf{M}}\right) \mathbf{Y}_{\nu}$$

$$(\mathbf{m}_{\mathbf{L}}^{2})_{21} pprox - rac{6}{16\pi^{2}} m_{\mathrm{SUSY}}^{2} \left(\mathbf{Y}_{m{
u}}^{\dagger} \log \left(rac{\Lambda}{\mathbf{M}}
ight) \mathbf{Y}_{m{
u}}
ight)_{21}$$

Outline

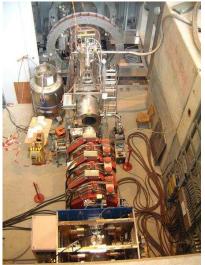

- The see-saw
 - Motivation
 - Mechanism

2 Supersymmetry

- Motivation
- Basics of the ν MSSM
- Generation of $(\mathbf{m}_{L}^{2})_{21}$ via the RGEs
- $\bigcirc \mu \to e\gamma$
 - $\mu \rightarrow e \gamma$ in the $\nu {
 m MSSM}$
 - Experimental status
 - 4 Constraints on the see-saw
 - 5 Summary

 $\mu \rightarrow e\gamma \quad \mu \rightarrow e\gamma$ in the ν MSSM

$\mu \rightarrow e\gamma$ in the ν MSSM


Experimental status

MEGA

- was running from 1993–1995 at the Los Alamos Laboratory
- $\bullet~$ collected $\sim 10^{14}$ muon decays
- no evidence for $\mu \to e \gamma$
- BR($\mu \rightarrow e\gamma$) < 10⁻¹¹

Experimental status

The MEG experiment

Experimental status

MEGA

- was running from 1993–1995 at the Los Alamos Laboratory
- $\bullet\,$ collected $\sim 10^{14}$ muon decays
- no evidence for $\mu \to e \gamma$
- BR($\mu \rightarrow e\gamma$) < 10⁻¹¹

MEG

- runs from end of 2008 at PSI in Switzerland
- $\bullet~3$ month have already been analysed corresponding to $\sim 10^{14}$ muon decays
- no evidence for $\mu \to e \gamma$
- Aim: BR($\mu \rightarrow e\gamma$) < 10⁻¹³

Outline

The see-saw

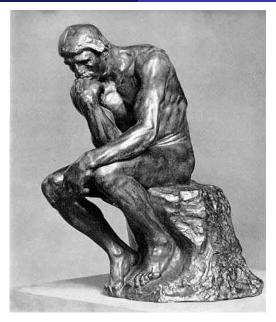
- Motivation
- Mechanism

2 Supersymmetry

- Motivation
- Basics of the ν MSSM
- Generation of $(\mathbf{m}_{L}^{2})_{21}$ via the RGEs
- 3) $\mu
 ightarrow e \gamma$
 - $\mu \rightarrow e\gamma$ in the $\nu MSSM$
 - Experimental status

4 Constraints on the see-saw

Summary


- See-saw mass formula:
- Generation of $(\mathbf{m}_{\mathbf{L}}^2)_{21}$:
- Bound from $\mu \rightarrow e\gamma$:

$$\begin{split} \mathbf{m}_{\boldsymbol{\nu}} &= \left\langle H_{\boldsymbol{\nu}}^{0} \right\rangle^{2} \left(\mathbf{Y}_{\boldsymbol{\nu}}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\boldsymbol{\nu}} \right) \\ (\mathbf{m}_{\mathsf{L}}^{2})_{21} &\approx -\frac{6}{16\pi^{2}} m_{\mathrm{SUSY}}^{2} \left(\mathbf{Y}_{\boldsymbol{\nu}}^{\dagger} \log \left(\frac{\Lambda}{\mathsf{M}} \right) \mathbf{Y}_{\boldsymbol{\nu}} \right)_{21} \\ 10^{-11} &> \mathrm{BR}(\mu \to e\gamma) \approx \frac{\alpha^{3}}{G_{F}^{2}} \frac{|(\mathbf{m}_{\mathsf{L}}^{2})_{21}|^{2}}{m_{\mathrm{SUSY}}^{3}} \tan^{2}\beta \end{split}$$

Assumptions

- hierarchical $\mathbf{Y}_{\mathbf{\nu}}$, i.e. $Y_1 \ll Y_2 \ll Y_3$
- Absence of cancellations

 \Downarrow Some algebra \Downarrow

- See-saw mass formula:
- Generation of $(\mathbf{m}_{\mathbf{L}}^2)_{21}$:
- Bound from $\mu \rightarrow e\gamma$:

$$\begin{split} \mathbf{m}_{\nu} &= \left\langle H_{u}^{0} \right\rangle^{2} \left(\mathbf{Y}_{\nu}^{T} \mathbf{M}^{-1} \mathbf{Y}_{\nu} \right) \\ (\mathbf{m}_{\mathsf{L}}^{2})_{21} &\approx -\frac{6}{16\pi^{2}} m_{\mathrm{SUSY}}^{2} \left(\mathbf{Y}_{\nu}^{\dagger} \log \left(\frac{\Lambda}{\mathsf{M}} \right) \mathbf{Y}_{\nu} \right)_{21} \\ 10^{-11} &> \mathrm{BR}(\mu \to e\gamma) \approx \frac{\alpha^{3}}{G_{F}^{2}} \frac{\left| \left(\mathbf{m}_{\mathsf{L}}^{2} \right)_{21} \right|^{2}}{m_{\mathrm{SUSY}}^{3}} \tan^{2} \beta \end{split}$$

Assumptions

- hierarchical $\mathbf{Y}_{\mathbf{\nu}}$, i.e. $Y_1 \ll Y_2 \ll Y_3$
- Absence of cancellations

 \Downarrow Some algebra \Downarrow

$$\begin{split} Y_1 \lesssim 4 \times 10^{-2} \left(\frac{\mathrm{BR}(\mu \rightarrow e\gamma)}{10^{-11}}\right)^{1/4} \left(\frac{m_{\mathrm{SUSY}}}{200 \text{ GeV}}\right) \left(\frac{\tan\beta}{10}\right)^{-1/2} \\ M_1 \lesssim 5 \times 10^{12} \text{ GeV} \left(\frac{\mathrm{BR}(\mu \rightarrow e\gamma)}{10^{-11}}\right)^{1/2} \left(\frac{m_{\mathrm{SUSY}}}{200 \text{ GeV}}\right)^2 \left(\frac{\tan\beta}{10}\right)^{-1} \end{split}$$

Outline

- The see-saw
 - Motivation
 - Mechanism

2 Supersymmetry

- Motivation
- Basics of the ν MSSM
- Generation of $(m_L^2)_{21}$ via the RGEs
- $3~\mu
 ightarrow e\gamma$
 - $\mu \rightarrow e \gamma$ in the νMSSM
 - Experimental status
- 4 Constraints on the see-saw

5 Summary

Summary

Framework

• See-saw • MSSM $\} \nu$ MSSM

Underlying new physics searches

- Muon number violation: MEGA, MEG, PRISM/PRIME
- Supersymmetry: LHC

Result

Upper bound on

- the lightest right handed neutrino mass
- the smallest neutrino Yukawa coupling

Two points of view:

• Amazing!

So what? Any consequence?

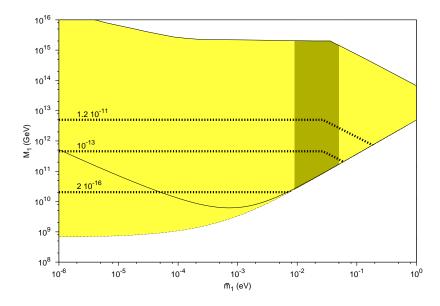
Two points of view:

• Amazing!

 \rightarrow Learn about physics at very high scales!

• So what? Any consequence?

Two points of view:


• Amazing!

 \rightarrow Learn about physics at very high scales!

• So what? Any consequence?

 \rightarrow Leptogenesis could be ruled out.

Summary

