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Starting Point:

Field theories are L∞ algebras [O. Hohm, B. Zwiebach, Fortsch.Phys. 65 (2017)]

The L∞ bootstrap for non-commutative gauge theories
[R. Blumenhagen, I. Brunner, V. Kupriyanov, D. Lüst, JHEP 05 (2018)]

Questions:

What about the uniqueness of the L∞ bootstrap?

What about supersymmetry?

Results:

L∞ quasi-isomorphisms are Seiberg-Witten maps.
[R. Blumenhagen, M. Brinkmann,V. Kupriyanov, M. Traube, arXiv:1806.10314]

SUSY symmetry-algebras are super-L∞ algebras.
[R. Blumenhagen, M. Brinkmann, arXiv:1809.10467]
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Background: L∞ Algebras

Generalization of Lie algebras

Symmetry of closed string field theory [Zwiebach 1992]

Closely linked to field theories [Hohm, Zwiebach 2017]
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From Lie to L∞ Algebras

Lie algebras generalize to L∞ algebras

vector space: −→ Z-graded vector space:

X = X0 X =
⊕

k∈Z Xk

Lie bracket: [x1, x2] −→ L∞ maps: `n(x1, x2, ..., xn)

of degree |[·, ·]| = 0 of degree |`n| = n − 2

Jacobi Identity −→ L∞ defining relations

Encodes symmetry −→ Encodes symmetry
and dynamics
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L∞ Defining Relations

Defining relations: Jn = 0

J1(x) = `1(`1(x))

J2(x1, x2) = `1(`2(x1, x2))− `2(`1(x1), x2))− (−1)x1`2(x1, `1(x2))

J3(x1, x2, x3) = `2(`2(x1, x2), x3) + cyclic

+ `1(`3(x1, x2, x3)) + `3(`1(x1), x2, x3) + ...

...
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Field Theories are L∞ Algebras

Field theories and their dynamics are L∞ algebras*

The vector space is given by

X0 3 λ: gauge parameters
⊕

X = X−1 3 A: physical fields
⊕
X−2 3 F : field dynamics

*Hohm, Zwiebach (2017)
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Dynamic Sector

The action of a field theory can be written as

S(A) =
1

2
〈A, `1(A)〉 − 1

3!
〈A, `2(A2)〉 − 1

4!
〈A, `3(A3)〉+ ...

Example: Chern-Simons theory (with 〈A,B〉 =
∫

d3x ηabAaBb)

S(A) =
1

2

∫
d3x εabc

(
Aa ∂bAc +

1

3
Aa[Ab,Ac ]

)
=

1

2
〈A, ε∗∂A〉+

1

3!
〈A, ε∗[A,A]〉

=⇒ `1(A) = ε∗∂A , `2(A,B) = −ε∗[A,B]
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Gauge Sector

The fields transform under gauge transformations as

δλA = `1(λ) + `2(λ,A)− 1

2
`3(λ,A2)− 1

3!
`4(λ,A3) + ... .

Example: Lie algebra acting on a vector field

δλAa = ∂aλ+ [Aa, λ]

=⇒ `1(λ) = ∂λ , `2(λ,A) = [A, λ]
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Gauge Sector

The gauge algebra is given by

[δλ1 , δλ2]A = δ−`2(λ1,λ2)−`3(λ1,λ2,A)+ 1
2
`4(λ1,λ2,A2)−... A .

Example: Lie algebra

[δλ1 δλ2 ] = δ[λ1,λ2]

=⇒ `2(λ1, λ2) = −[λ1, λ2]
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Example: Chern-Simons Theory

Traditional description

Action

Symmetry: Lie algebra

Transformation
properties

Equivalent L∞ description

L∞ algebra covers all aspects.

`1(λ) = ∂λ

`1(A) = ε∗∂A

`2(λ1, λ2) = −[λ1, λ2]

`2(λ,A) = [A, λ]

`2(A,B) = −ε∗[A,B]
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The L∞ Bootstrap

The L∞ bootstrap was proposed for gauge theories where the action and

equations of motion are unknown (e.g. noncommutative gauge theories).

The Idea:

Bootstrap an interacting gauge theory by imposing L∞ algebra on
the free theory.*

Starting from known L∞ maps, impose the defining relations.

Where they fail to hold, define new maps so they are satisfied.

Order by order deduce corrections to the theory.

Problem:

Solutions to the bootstrap are not unique!

*Blumenhagen, Brunner, Kupriyanov, Lüst (2018)
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Seiberg-Witten Maps are Quasi-Isomorphisms

Seiberg-Witten maps

Seiberg-Witten maps are field redefinitions that ensure the physical
properties stay the same by mapping gauge orbits to gauge orbits.

Quasi-isomorphisms

L∞ algebras are categorially equivalent if they are quasi-isomorphic.

Results:

Gauge theories with quasi-isomorphic L∞ algebras are
physically equivalent via Seiberg-Witten maps.

The L∞ algebras of gauge theories related by Seiberg-Witten
maps are (almost) quasi-isomorphic.
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Seiberg-Witten Maps are Quasi-Isomorphisms

Results:

Gauge theories with quasi-isomorphic L∞ algebras are
physically equivalent via Seiberg-Witten maps.

The L∞ algebras of gauge theories related by Seiberg-Witten
maps are (almost) quasi-isomorphic.*

All examples of different solutions to the bootstrap we have found
are quasi-isomorphic.

*Blumenhagen, MB, Kupriyanov, Traube (2018)
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Symmetry Algebras

For symmetry algebras like W algebras, the same dictionary
holds as in the gauge sector of field theories*.

No action: reduced vector space

X = X−1 ⊕ X0

W algebras can be extended to super-W algebras

Perfect setting to investigate SUSY extension of dictionary.

*Blumenhagen, Fuchs, Traube (2017)
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Super-Virasoro Algebra

Fields / symmetry parameters

Energy-momentum tensor L / εL

Superpartner G / εG

Algebra between them

Symmetry transformations & their algebra lead to L∞ maps:

`L1(εL) =
c

12
∂3εL `G1 (εG ) =

c

3
∂2εG

`ε
L

2 (εL, ε̃L) = εL ∂ε̃L − ∂εL ε̃L . . .

The superscript labels the vector space `Xn maps to.
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The Vector Space

Consistency requires

`Xn (A,B, ...) 6= 0 ⇒ |X | = |A|+ |B|+ ...+ n − 2 .

This is sufficient information to deduce the gradings

|L| = |G | = −1 , |εL| = |εG | = 0 .

The vector space can be written as

X = X0 ⊕ X−1 , Xi∈{0,−1} = X bos
i ⊕ X ferm

i .
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Super-L∞ Algebra

A super-L∞ algebra is an L∞ algebra over a graded super vector
space

X =
⊕
n∈Z

(
X bos
n ⊕ X ferm

n

)
.

This is exactly the structure we have found for the super-Virasoro
algebra!

We must check if the maps defined above satisfy the L∞ relations.
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Super-Virasoro Algebra is a Super-L∞ Algebra

Results:

The super-Virasoro algebra is a super-L∞ algebra.

The dictionary works for supersymmetric symmetry algebras.*

Conjecture?

Supersymmetric field theories are super-L∞ algebras.

The dictionary works for supersymmetric field theories.

*Blumenhagen, Brinkmann (2018)
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Conclusions & Outlook

Conclusions

We have found an L∞ dictionary for SUSY theories.

A bootstrap method for unknown gauge theories has been proposed.

Many redundancies in the bootstrap can be traced to
Seiberg-Witten maps.

Outlook

Can we apply the bootstrap to non-commutative gravity?

Can we apply the bootstrap to SUSY gauge theories?

How are the L∞ algebras of holographic theories related?
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L∞ Algebra - Maps on a Graded Vector Space

Let X be a Z-graded vector space.

X =
⊕
n∈Z

Xn

Let {`n : X⊗n → X}n>0 be graded anti-commutative multilinear
maps of degree |`n| = n − 2 acting on X .

`n(..., xi , xj , ...) = (−1)1+xixj `n(..., xj , xi , ...)

{`n : X⊗n → X}n>0 form an L∞ algebra if they satisfy the L∞
defining relations.



L∞ Algebra - An Example

Lie algebras are the simplest L∞ algebras:

A graded vector space: X = X0

A collection of maps: `2(x1, x2) = Lx1x2 = [x1, x2]

A collection of conditions: Only J3 nontrivial.

J3 = `2(`2(x1, x2), x3) + `2(`2(x2, x3), x1) + `2(`2(x3, x1), x2 = 0

is just the Jacobi identity for the Lie algebra.



Equations of Motion

The equations of motion F ∈ X−2 are given by

F =
∑
n≥1

1

n!
(−1)

n(n−1)
2 `n(An)

= `1(A)− 1

2
`2(A2)− 1

3!
`3(A3) +

1

4!
`4(A4) + ... .

Example: Chern-Simons theory

F = ε∗

(
∂A +

1

2
[A,A]

)
= `1(A)− 1

2
`2(A2)



The Dictionary

δλA = `1(λ) + `2(λ,A)− 1

2
`3(λ,A2)− 1

3!
`4(λ,A3) + ...

[δλ1 , δλ2 ] A = δ`2(λ1,λ2)+`3(λ1,λ2,A)− 1
2
`4(λ1,λ2,A2)−... A

S(A) =
1

2
〈A, `1(A)〉 − 1

3!
〈A, `2(A2)〉 − 1

4!
〈A, `3(A3)〉+ ...

F(A) = `1(A)− 1

2
`2(A2)− 1

3!
`3(A3) +

1

4!
`4(A4) + ...



L∞ Field Theory Example: Chern-Simons

There are 7 nontrivial L∞ relations to check.

J1(λ) : 0 = `1(`1(λ)) = εbca ∂b`1(λ)c = εbca ∂b∂cλ X

J2(λ,A) : 0 = `1(`2(λ,A))− . . . X
... X

The previously defined maps are not sufficient to satisfy all
relations. This can be resolved by additionally defining `2(E , λ).

Note that the new map does not appear in any physical quantities.
The physics stay the same after defining this new map.



Super-Virasoro Algebra

The super-Virasoro algebra is the simplest super-W algebra.

Fields

Energy-momentum tensor L

Superpartner G

OPE Algebra

L(z) L(w) =
c/2

(z − w)4
+

2L(w)

(z − w)2
+
∂wL(w)

z − w
+ ... ,

L(z) G (w) =
3
2G (w)

(z − w)2
+
∂wG (w)

z − w
+ ... ,

G (z) G (w) =
2
3c

(z − w)3
+

2L(w)

z − w
+ ...



Symmetry Transformations

The fields transform as

δεY X (w) =
1

2πi

∮
C(w)

dz εY (z)
(

Y (z)X (w)
)

with X ,Y ∈ {L,G}.

Note that G and εG are Grassmann odd.



The L∞ Maps

The transformations and their commutators lead to L∞ maps:

`L1(εL) =
c

12
∂3εL `G1 (εG ) =

c

3
∂2εG

`ε
L

2 (εL, ε̃L) = εL ∂ε̃L − ∂εL ε̃L `ε
L

2 (εG , ε̃G ) = −2εG ε̃G

`L2(εL, L) = 2∂εLL + εL∂L `L2(εG ,G ) = −3

2
∂εGG − 1

2
εG∂G

`G2 (εL,G ) =
3

2
∂εLG + εL∂G `G2 (εG , L) = 2εGL

`ε
G

2 (εL, εG ) = εL ∂εG − 1

2
∂εL εG

The superscript labels the vector space `Xn maps to.



Uniqueness of Solutions to the L∞ Bootstrap

Problem:

Solutions to the bootstrap are not unique!

Example: Abelian Chern-Simons

`1(λ) = ∂λ , `1(A) = ε∗∂A , `2(λ1, λ2) = 0 .

In the bootstrap, `2(λ,A) = 0 is the obvious solution to

0 = `2(`1(λ1), λ2)) + `2(λ1, `1(λ2)) .

There are many other solutions!

`2(λ,A)a = v i (Ai∂aλ− Aa∂iλ)

and many more.
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