The Interplay of L_∞ Algebras and Field Theories

Max Brinkmann

MPP - IMPRS Workshop

14.11.18

The Interplay of L_∞ Algebras and Field Theories

Masters thesis at MPP/LMU, Supervisor: PD Dr. Ralph Blumenhagen

Starting Point:

- Field theories are L_{∞} algebras [O. Hohm, B. Zwiebach, Fortsch.Phys. 65 (2017)]
- $\bullet\,$ The L_∞ bootstrap for non-commutative gauge theories

[R. Blumenhagen, I. Brunner, V. Kupriyanov, D. Lüst, JHEP 05 (2018)]

Questions:

- $\bullet\,$ What about the uniqueness of the L_∞ bootstrap?
- What about supersymmetry?

Results:

 $\bullet~L_\infty$ quasi-isomorphisms are Seiberg-Witten maps.

[R. Blumenhagen, M. Brinkmann, V. Kupriyanov, M. Traube, arXiv:1806.10314]

 $\bullet~SUSY$ symmetry-algebras are super-L $_\infty$ algebras.

[R. Blumenhagen, M. Brinkmann, arXiv:1809.10467]

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook o

Background: L_{∞} Algebras

- Generalization of Lie algebras
- Symmetry of closed string field theory [Zwiebach 1992]
- Closely linked to field theories [Hohr

[Hohm, Zwiebach 2017]

 L_∞ Algebras & Field Theories $0{\bullet}000000$

The L_∞ Bootstrap 000

SUSY Symmetry Algebras

Conclusions & Outlook o

From Lie to L_∞ Algebras

Lie algebras	generalize to	L_{∞} algebras
vector space: $X = X_0$	\longrightarrow	\mathbb{Z} -graded vector space: $X = \bigoplus_{k \in \mathbb{Z}} X_k$
Lie bracket: $[x_1, x_2]$ of degree $ [\cdot, \cdot] = 0$	\longrightarrow	$ L_{\infty} \text{ maps: } \ell_n(x_1, x_2,, x_n) $ of degree $ \ell_n = n - 2 $
Jacobi Identity	\longrightarrow	L_∞ defining relations
Encodes symmetry	\longrightarrow	Encodes symmetry and dynamics

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook o

L_∞ Defining Relations

Defining relations: $\mathcal{J}_n = 0$

 $\mathcal{J}_1(x) = \ell_1(\ell_1(x))$

 $\mathcal{J}_2(x_1, x_2) = \ell_1(\ell_2(x_1, x_2)) - \ell_2(\ell_1(x_1), x_2)) - (-1)^{x_1}\ell_2(x_1, \ell_1(x_2))$

 $\begin{aligned} \mathcal{J}_3(x_1, x_2, x_3) &= \ell_2(\ell_2(x_1, x_2), x_3) + \text{ cyclic} \\ &+ \ell_1(\ell_3(x_1, x_2, x_3)) + \ell_3(\ell_1(x_1), x_2, x_3) + \dots \end{aligned}$

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook o

Field Theories are L_{∞} Algebras

- \bullet Field theories and their dynamics are L_∞ algebras $\!\!\!\!^*$
- The vector space is given by

$$\begin{array}{c|c} X_0 \\ \oplus \\ X = & \begin{array}{c} X_{-1} \\ \oplus \\ X_{-2} \end{array} \middle| \begin{array}{c} \ni \lambda : \text{ gauge parameters} \\ \Rightarrow A : \text{ physical fields} \\ \oplus \\ X_{-2} \end{array} \middle| \begin{array}{c} \Rightarrow \mathcal{F} : \text{ field dynamics} \end{array}$$

^{*}Hohm, Zwiebach (2017)

The L_{∞} Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook o

Dynamic Sector

The action of a field theory can be written as

$$\mathcal{S}(\mathcal{A}) = rac{1}{2} \left\langle \mathcal{A}, \ell_1(\mathcal{A})
ight
angle - rac{1}{3!} \left\langle \mathcal{A}, \ell_2(\mathcal{A}^2)
ight
angle - rac{1}{4!} \left\langle \mathcal{A}, \ell_3(\mathcal{A}^3)
ight
angle + ...$$

Example: Chern-Simons theory (with $\langle A, B \rangle = \int d^3x \, \eta^{ab} A_a B_b$) $S(A) = \frac{1}{2} \int d^3x \, \epsilon^{abc} \left(A_a \, \partial_b A_c + \frac{1}{3} A_a [A_b, A_c] \right)$ $= \frac{1}{2} \langle A, \epsilon_* \partial A \rangle + \frac{1}{3!} \langle A, \epsilon_* [A, A] \rangle$ $\implies \ell_1(A) = \epsilon_* \partial A, \quad \ell_2(A, B) = -\epsilon_* [A, B]$

The L_{∞} Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook 0

Gauge Sector

The fields transform under gauge transformations as

$$\delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A) - \frac{1}{2}\ell_3(\lambda, A^2) - \frac{1}{3!}\ell_4(\lambda, A^3) + \dots$$

Example: Lie algebra acting on a vector field $\delta_{\lambda}A_{a} = \partial_{a}\lambda + [A_{a}, \lambda]$ $\implies \ell_{1}(\lambda) = \partial\lambda, \quad \ell_{2}(\lambda, A) = [A, \lambda]$

The L_∞ Bootstrap 000

SUSY Symmetry Algebras

Conclusions & Outlook o

Gauge Sector

The gauge algebra is given by

$$[\delta_{\lambda_1}, \delta_{\lambda_2}] \mathbf{A} = \delta_{-\ell_2(\lambda_1, \lambda_2) - \ell_3(\lambda_1, \lambda_2, \mathbf{A}) + \frac{1}{2}\ell_4(\lambda_1, \lambda_2, \mathbf{A}^2) - \dots} \mathbf{A}.$$

Example: Lie algebra

$$\begin{split} [\delta_{\lambda_1} \, \delta_{\lambda_2}] &= \delta_{[\lambda_1, \lambda_2]} \\ \implies \ell_2(\lambda_1, \lambda_2) &= -[\lambda_1, \lambda_2] \end{split}$$

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Example: Chern-Simons Theory

Traditional description

- Action
- Symmetry: Lie algebra
- Transformation properties

Equivalent L_{∞} description L_{∞} algebra covers all aspects.

```
\ell_1(\lambda) = \partial \lambda

\ell_1(A) = \epsilon_* \partial A

\ell_2(\lambda_1, \lambda_2) = -[\lambda_1, \lambda_2]

\ell_2(\lambda, A) = [A, \lambda]

\ell_2(A, B) = -\epsilon_*[A, B]
```

The Interplay of L_{∞} Algebras and Field Theories Masters thesis at MPP/LMU, Supervisor: PD Dr. Ralph Blumenhagen

Starting Point:

- \bullet Field theories are L_∞ algebras
- $\bullet\,$ The L_∞ bootstrap for non-commutative gauge theories

Questions:

- \bullet What about the uniqueness of the L_∞ bootstrap?
- What about supersymmetry?

Results:

- $\bullet~L_\infty$ quasi-isomorphisms are Seiberg-Witten maps.
- $\bullet~SUSY$ symmetry-algebras are super-L $_\infty$ algebras.

The L_∞ Bootstrap _______ O \bullet O ______

SUSY Symmetry Algebras

Conclusions & Outlook 0

The L_{∞} Bootstrap

The L_∞ bootstrap was proposed for gauge theories where the action and equations of motion are unknown (e.g. noncommutative gauge theories).

The Idea:

Bootstrap an interacting gauge theory by imposing L_∞ algebra on the free theory.*

- $\bullet\,$ Starting from known L_∞ maps, impose the defining relations.
- Where they fail to hold, define new maps so they are satisfied.
- Order by order deduce corrections to the theory.

^{*}Blumenhagen, Brunner, Kupriyanov, Lüst (2018)

The L_∞ Bootstrap _______ O \bullet O ______

SUSY Symmetry Algebras

Conclusions & Outlook o

The L_{∞} Bootstrap

The L_∞ bootstrap was proposed for gauge theories where the action and equations of motion are unknown (e.g. noncommutative gauge theories).

The Idea:

Bootstrap an interacting gauge theory by imposing L_∞ algebra on the free theory.*

- $\bullet\,$ Starting from known L_∞ maps, impose the defining relations.
- Where they fail to hold, define new maps so they are satisfied.
- Order by order deduce corrections to the theory.

Problem:

Solutions to the bootstrap are not unique!

^{*}Blumenhagen, Brunner, Kupriyanov, Lüst (2018)

Seiberg-Witten Maps are Quasi-Isomorphisms

Seiberg-Witten maps

Seiberg-Witten maps are field redefinitions that ensure the physical properties stay the same by mapping gauge orbits to gauge orbits.

Quasi-isomorphisms

 L_∞ algebras are categorially equivalent if they are quasi-isomorphic.

SUSY Symmetry Algebras

Conclusions & Outlook o

Seiberg-Witten Maps are Quasi-Isomorphisms

Seiberg-Witten maps

Seiberg-Witten maps are field redefinitions that ensure the physical properties stay the same by mapping gauge orbits to gauge orbits.

Quasi-isomorphisms

 L_∞ algebras are categorially equivalent if they are quasi-isomorphic.

Results:

- $\bullet\,$ Gauge theories with quasi-isomorphic L_∞ algebras are physically equivalent via Seiberg-Witten maps.
- $\bullet\,$ The L_∞ algebras of gauge theories related by Seiberg-Witten maps are (almost) quasi-isomorphic.

SUSY Symmetry Algebras

Conclusions & Outlook o

Seiberg-Witten Maps are Quasi-Isomorphisms

Results:

- Gauge theories with quasi-isomorphic L_∞ algebras are physically equivalent via Seiberg-Witten maps.
- The L_∞ algebras of gauge theories related by Seiberg-Witten maps are (almost) quasi-isomorphic.*

All examples of different solutions to the bootstrap we have found are quasi-isomorphic.

^{*}Blumenhagen, MB, Kupriyanov, Traube (2018)

The Interplay of L_∞ Algebras and Field Theories

Masters thesis at MPP/LMU, Supervisor: PD Dr. Ralph Blumenhagen

Starting Point:

- $\bullet\,$ Field theories are L_∞ algebras
- $\bullet\,$ The L_∞ bootstrap for non-commutative gauge theories

Questions:

- What about the uniqueness of the L_∞ bootstrap?
- What about supersymmetry?

Results:

- $\bullet~L_\infty$ quasi-isomorphisms are Seiberg-Witten maps.
- $\bullet~SUSY$ symmetry-algebras are super-L $_\infty$ algebras.

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Symmetry Algebras

- For symmetry algebras like \mathcal{W} algebras, the same dictionary holds as in the gauge sector of field theories^{*}.
- No action: reduced vector space

$$X = X_{-1} \oplus X_0$$

- $\bullet \ \mathcal{W}$ algebras can be extended to super- \mathcal{W} algebras
- Perfect setting to investigate SUSY extension of dictionary.

^{*}Blumenhagen, Fuchs, Traube (2017)

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Super-Virasoro Algebra

Fields / symmetry parameters

- Energy-momentum tensor L / ϵ^L
- Superpartner G / ϵ^G
- Algebra between them

Symmetry transformations & their algebra lead to L_∞ maps:

$$\ell_1^L(\epsilon^L) = \frac{c}{12} \partial^3 \epsilon^L \qquad \qquad \ell_1^G(\epsilon^G) = \frac{c}{3} \partial^2 \epsilon^G$$
$$\ell_2^{\epsilon^L}(\epsilon^L, \tilde{\epsilon}^L) = \epsilon^L \partial \tilde{\epsilon}^L - \partial \epsilon^L \tilde{\epsilon}^L \qquad \qquad \dots$$

The superscript labels the vector space ℓ_n^X maps to.

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook 0

The Vector Space

Consistency requires

$$\ell_n^X(A, B, ...) \neq 0 \quad \Rightarrow \quad |X| = |A| + |B| + ... + n - 2.$$

This is sufficient information to deduce the gradings

$$|L| = |G| = -1$$
, $|\epsilon^{L}| = |\epsilon^{G}| = 0$.

The vector space can be written as

$$X = X_0 \oplus X_{-1}$$
, $X_{i \in \{0,-1\}} = X_i^{\mathsf{bos}} \oplus X_i^{\mathsf{ferm}}$.

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook 0

Super-L $_{\infty}$ Algebra

A super- L_∞ algebra is an L_∞ algebra over a graded super vector space

$$X = \bigoplus_{n \in \mathbb{Z}} \left(X_n^{\mathsf{bos}} \oplus X_n^{\mathsf{ferm}}
ight) \,.$$

This is exactly the structure we have found for the super-Virasoro algebra!

We must check if the maps defined above satisfy the L_∞ relations.

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Super-Virasoro Algebra is a Super-L $_{\infty}$ Algebra

Results:

- $\bullet\,$ The super-Virasoro algebra is a super-L $_\infty$ algebra.
- The dictionary works for supersymmetric symmetry algebras.*

^{*}Blumenhagen, Brinkmann (2018)

Super-Virasoro Algebra is a Super-L $_{\infty}$ Algebra

Results:

- $\bullet\,$ The super-Virasoro algebra is a super-L $_\infty$ algebra.
- The dictionary works for supersymmetric symmetry algebras.*

Conjecture?

- \bullet Supersymmetric field theories are super-L $_\infty$ algebras.
- The dictionary works for supersymmetric field theories.

^{*}Blumenhagen, Brinkmann (2018)

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Conclusions & Outlook

Conclusions

- $\bullet\,$ We have found an L_∞ dictionary for SUSY theories.
- A bootstrap method for unknown gauge theories has been proposed.
- Many redundancies in the bootstrap can be traced to Seiberg-Witten maps.

The L $_{\infty}$ Bootstrap

SUSY Symmetry Algebras

Conclusions & Outlook

Conclusions & Outlook

Conclusions

- $\bullet\,$ We have found an L_∞ dictionary for SUSY theories.
- A bootstrap method for unknown gauge theories has been proposed.
- Many redundancies in the bootstrap can be traced to Seiberg-Witten maps.

Outlook

- Can we apply the bootstrap to non-commutative gravity?
- Can we apply the bootstrap to SUSY gauge theories?
- $\bullet\,$ How are the L_∞ algebras of holographic theories related?

Acknowledgements

- Ralph Blumenhagen
- Dieter Lüst
- Matthias Traube
- Vladislav Kupriyanov
- Munich string group

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Acknowledgements

- Ralph Blumenhagen
- Dieter Lüst
- Matthias Traube
- Vladislav Kupriyanov
- Munich string group

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Thank you for your attention!

L_∞ Algebra - Maps on a Graded Vector Space

Let X be a \mathbb{Z} -graded vector space.

$$X = \bigoplus_{n \in \mathbb{Z}} X_n$$

Let $\{\ell_n : X^{\otimes n} \to X\}_{n>0}$ be graded anti-commutative multilinear maps of degree $|\ell_n| = n - 2$ acting on X.

$$\ell_n(...,x_i,x_j,...) = (-1)^{1+x_ix_j}\ell_n(...,x_j,x_i,...)$$

 $\{\ell_n : X^{\otimes n} \to X\}_{n>0}$ form an L_{∞} algebra if they satisfy the L_{∞} defining relations.

L_∞ Algebra - An Example

Lie algebras are the simplest L_{∞} algebras:

 $\begin{array}{ll} \mbox{A graded vector space:} & X = X_0 \\ \mbox{A collection of maps:} & \ell_2(x_1,x_2) = \mathcal{L}_{x_1}x_2 = [x_1,x_2] \\ \mbox{A collection of conditions:} & \mbox{Only } \mathcal{J}_3 \mbox{ nontrivial.} \end{array}$

$$\mathcal{J}_3 = \ell_2(\ell_2(x_1, x_2), x_3) + \ell_2(\ell_2(x_2, x_3), x_1) + \ell_2(\ell_2(x_3, x_1), x_2 = 0)$$

is just the Jacobi identity for the Lie algebra.

Equations of Motion

The equations of motion $\mathcal{F} \in X_{-2}$ are given by

$$egin{aligned} \mathcal{F} &= \sum_{n \geq 1} rac{1}{n!} (-1)^{rac{n(n-1)}{2}} \ell_n(\mathcal{A}^n) \ &= \ell_1(\mathcal{A}) - rac{1}{2} \ell_2(\mathcal{A}^2) - rac{1}{3!} \ell_3(\mathcal{A}^3) + rac{1}{4!} \ell_4(\mathcal{A}^4) + \dots. \end{aligned}$$

Example: Chern-Simons theory

$$\mathcal{F} = \epsilon_* \left(\partial A + \frac{1}{2} [A, A] \right) = \ell_1(A) - \frac{1}{2} \ell_2(A^2)$$

The Dictionary

$$\begin{split} \delta_{\lambda} A &= \ell_1(\lambda) + \ell_2(\lambda, A) - \frac{1}{2}\ell_3(\lambda, A^2) - \frac{1}{3!}\ell_4(\lambda, A^3) + \dots \\ [\delta_{\lambda_1}, \delta_{\lambda_2}] A &= \delta_{\ell_2(\lambda_1, \lambda_2) + \ell_3(\lambda_1, \lambda_2, A) - \frac{1}{2}\ell_4(\lambda_1, \lambda_2, A^2) - \dots} A \\ S(A) &= \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A^2) \rangle - \frac{1}{4!} \langle A, \ell_3(A^3) \rangle + \dots \\ \mathcal{F}(A) &= \ell_1(A) - \frac{1}{2}\ell_2(A^2) - \frac{1}{3!}\ell_3(A^3) + \frac{1}{4!}\ell_4(A^4) + \dots \end{split}$$

L_∞ Field Theory Example: Chern-Simons

There are 7 nontrivial L_{∞} relations to check.

$$\mathcal{J}_{1}(\lambda): \quad 0 = \ell_{1}(\ell_{1}(\lambda)) = \epsilon_{a}^{bc} \partial_{b} \ell_{1}(\lambda)_{c} = \epsilon_{a}^{bc} \partial_{b} \partial_{c} \lambda \quad \checkmark$$
$$\mathcal{J}_{2}(\lambda, A): \quad 0 = \ell_{1}(\ell_{2}(\lambda, A)) - \dots \qquad \checkmark$$
$$\vdots \qquad \checkmark$$

The previously defined maps are not sufficient to satisfy all relations. This can be resolved by additionally defining $\ell_2(E, \lambda)$.

Note that the new map does not appear in any physical quantities. The physics stay the same after defining this new map.

Super-Virasoro Algebra

The super-Virasoro algebra is the simplest super- \mathcal{W} algebra.

Fields

- Energy-momentum tensor L
- Superpartner G

OPE Algebra

$$L(z) L(w) = \frac{c/2}{(z-w)^4} + \frac{2L(w)}{(z-w)^2} + \frac{\partial_w L(w)}{z-w} + \dots,$$

$$L(z) G(w) = \frac{\frac{3}{2}G(w)}{(z-w)^2} + \frac{\partial_w G(w)}{z-w} + \dots,$$

$$G(z) G(w) = \frac{\frac{2}{3}c}{(z-w)^3} + \frac{2L(w)}{z-w} + \dots$$

Symmetry Transformations

The fields transform as

$$\delta_{\epsilon^{Y}}X(w) = \frac{1}{2\pi i} \oint_{\mathcal{C}(w)} dz \ \epsilon^{Y}(z) \Big(Y(z)X(w)\Big)$$

with $X, Y \in \{L, G\}$.

Note that G and ϵ^{G} are Grassmann odd.

The L_∞ Maps

The transformations and their commutators lead to L_∞ maps:

$$\ell_{1}^{L}(\epsilon^{L}) = \frac{c}{12}\partial^{3}\epsilon^{L} \qquad \qquad \ell_{1}^{G}(\epsilon^{G}) = \frac{c}{3}\partial^{2}\epsilon^{G}$$
$$\ell_{2}^{\epsilon^{L}}(\epsilon^{L}, \tilde{\epsilon}^{L}) = \epsilon^{L}\partial\tilde{\epsilon}^{L} - \partial\epsilon^{L}\tilde{\epsilon}^{L} \qquad \qquad \ell_{2}^{\epsilon^{L}}(\epsilon^{G}, \tilde{\epsilon}^{G}) = -2\epsilon^{G}\tilde{\epsilon}^{G}$$
$$\ell_{2}^{L}(\epsilon^{L}, L) = 2\partial\epsilon^{L}L + \epsilon^{L}\partial L \qquad \qquad \ell_{2}^{L}(\epsilon^{G}, G) = -\frac{3}{2}\partial\epsilon^{G}G - \frac{1}{2}\epsilon^{G}\partial G$$
$$\ell_{2}^{G}(\epsilon^{L}, G) = \frac{3}{2}\partial\epsilon^{L}G + \epsilon^{L}\partial G \qquad \qquad \ell_{2}^{G}(\epsilon^{G}, L) = 2\epsilon^{G}L$$
$$\ell_{2}^{\epsilon^{G}}(\epsilon^{L}, \epsilon^{G}) = \epsilon^{L}\partial\epsilon^{G} - \frac{1}{2}\partial\epsilon^{L}\epsilon^{G}$$

The superscript labels the vector space ℓ_n^X maps to.

Uniqueness of Solutions to the L_∞ Bootstrap

Problem:

Solutions to the bootstrap are not unique!

Example: Abelian Chern-Simons

$$\ell_1(\lambda) = \partial \lambda$$
, $\ell_1(A) = \epsilon_* \partial A$, $\ell_2(\lambda_1, \lambda_2) = 0$.

In the bootstrap, $\ell_2(\lambda, A) = 0$ is the obvious solution to

$$0 = \ell_2(\ell_1(\lambda_1), \lambda_2)) + \ell_2(\lambda_1, \ell_1(\lambda_2)).$$

There are many other solutions!

$$\ell_2(\lambda, A)_a = v^i \left(A_i \partial_a \lambda - A_a \partial_i \lambda \right)$$

and many more.