
Polyglot programming
for science

Alexander Nozik
for BAT meeting 2018_11

• Different people prefer different
languages.

• Different languages have limited
interoperability.

• Different languages have
different runtimes which further
complicates the problem.

The problem

2

C API allows to make calls with common low-level language

Limitations:

• Rather limited in terms of data structures and functions

• Memory management problems

• Function references only inside single process

Solution for BAT in talk by Alexey Khudyakov

Solution 1: C API

3

Each request transformed into tree-like structure and transferred via
socket/websocket connection. The response is transferred in a same
way.

Problems:

• Overhead on each call from transport and parsing

• No obvious way to pass function

Solution 2: remote procedure call

4

• TCP round trip latency for local calls is 6 ms. Comparable with local
cross-language calls.

• Parsing time could be dramatically reduced by using binary tree
representation (CBOR, ProtoBuf, FlatBuffers).

• Non-blocking IO allows effective processing of TCP connections.

• A lot of support libraries for that.

Remote procedure call

5

Remote procedure call: functions

ClientServer

Function server

Data

Request with data handler and/or

function handler

response

{
"action": "integrate.rieman",
"parameters": {

"from": 0,
"to": 1,
"function": {

"name": "test:myFunction",
"type": "remote",
"connection": {

"address": "192.168.11.11",
"security": "security options here"

}
}

}
}

Example

Function handler

6

Function libraries

"function": {
"name": "test:mySum",
"type": "sum",
"functions": [

{
"name": “sin“

},
{

"name": "test:myRemoteFunction",
"type": "remote“

}
]

}

Function from server local
repository

Custom remote function

7

Function API (preliminary)
interface Function{

operator fun invoke(buffer: ByteBuffer): ByteBuffer
}

interface UnivariateRealFunction: Function{
operator fun invoke(value: Double): Double {

val buffer = ByteBuffer.allocate(8)
buffer.putDouble(value)
return this(buffer).getDouble()

}
}

+ -

• Different types
• Different numbers of parameters
• Custom argument types
• Possible memory sharing

• Additional allocation
• No control of actual layout of buffer

8

Run all programs in the common runtime, compiling them to IR.

Current platforms:

• CLR
• Supports its own languages (C#, F#, Basic, etc)
• Could use native libraries code and could compile existing C++/Fortran code
• Supports compile to LLVM via LLILC (Windows only, seems to be abandoned)

• GraalVM (RC)
• Good support for JVM languages (currently JDK 8 compatible)
• Powerful AST engine Truffle
• Features its own implementation of Python, JavaScript and R
• Runs LLVM IR (Julia as well?) in polyglot mode
• Interface between native code and VM code without JNI (at last)
• AOT compilation with SubstrateVM (no Windows yet )

Solution 3: common runtime

9

Compile the same code to be used later in different platforms. Code
must be optimized for platform specifics and libraries.

Solution 3.5: common code base

• Good JVM support in Kotlin-JVM (all Java libraries)
• JavaScript support in Kotlin-JS (full interop with JS)
• Native compilation in Kotlin-Native (LLVM backend)

• Full interop with C API, Objective C and Swift
• No bridge between Native and JVM yet, but

planned

Currently focus on mobile development and web back-
end, but scientific community grows.

10

Kotlin for science

11

Kotlin vs Java

https://hype.codes/kotlin-vs-java

12

Kotlin: example

// Extension function

fun Int.isOdd() = this % 2 != 0

// Result with type inference

val result = (10..20)

.filter{ it.isOdd() } // filtering odds

.associateWith{it.toString().last()} // associating to map

.map {entry-> "${entry.value}: ${entry.key}" } // string interpolation

// Functional style consume

result.forEach { println(it) }

1: 11

3: 13

5: 15

7: 17

9: 19

13

Kmath: ndarray operations

array:

[[1, 2.2],

[3.1, -5]]

val function: (Double) -> Double = { x -> x.pow(2) + 2 * x + 1 }

val result = function(array) + 1.0

/**

* Element by element application of any operation on elements to the whole array. Just like in numpy

*/

operator fun <T> Function1<T, T>.invoke(ndArray: NDArray<T>): NDArray<T> = ndArray.transform { _, value -> this(value) }

operator fun <T> NDArray<T>.plus(arg: T): NDArray<T> = transform { _, value ->

with(context.field) {

arg + value

}

}

Function on numbers

Applied to array

Error?

14

Context-oriented programming

val context = FieldExpressionContext(DoubleField)

val expression = with(context) {

val x = variable("x", 2.0)

x * x + 2 * x + 1.0

}

assertEquals(expression("x" to 1.0), 4.0)

assertEquals(expression(), 9.0)

val context = FieldExpressionContext(ComplexField)

val expression = with(context) {

val x = variable("x", Complex(2.0, 0.0))

x * x + 2 * x + 1.0

}

assertEquals(expression("x" to Complex(1.0, 0.0)), Complex(4.0, 0.0))

assertEquals(expression(), Complex(9.0, 0.0))

fun <T> FieldExpressionContext<T>.expression(): Expression<T>{

val x = variable("x")

return x * x + 2 * x + 1.0

}

val expression = FieldExpressionContext(DoubleField).expression()

assertEquals(expression("x" to 1.0), 4.0)

Real numbers

Complex numbers

In-place context

15

