
BAT2C++

Calling Julia from C++

A. Khudyakov

12 Nov 2018

A. Khudyakov BAT2C++ 1/ 16

Using BAT2 in C++ programs

You wanted a banana but what you got was a

gorilla holding the banana and the entire jungle.

Joe Armstrong

A. Khudyakov BAT2C++ 2/ 16

Our jungle

Banana: using BAT2

1 We simply want use BAT2 as library

Gorilla: mapping API

1 Mapping Julia API of BAT2 onto C++

Jungle: Julia/C++ interoperability

1 Memory management.

2 Marshalling data between C++ & Julia.

3 Multithreading.

A. Khudyakov BAT2C++ 3/ 16

Our jungle

Banana: using BAT2

1 We simply want use BAT2 as library

Gorilla: mapping API

1 Mapping Julia API of BAT2 onto C++

Jungle: Julia/C++ interoperability

1 Memory management.

2 Marshalling data between C++ & Julia.

3 Multithreading.

A. Khudyakov BAT2C++ 3/ 16

Our jungle

Banana: using BAT2

1 We simply want use BAT2 as library

Gorilla: mapping API

1 Mapping Julia API of BAT2 onto C++

Jungle: Julia/C++ interoperability

1 Memory management.

2 Marshalling data between C++ & Julia.

3 Multithreading.

A. Khudyakov BAT2C++ 3/ 16

Jungle

A. Khudyakov BAT2C++ 4/ 16

Memory management

C++

Manual memory management

Stack allocation

RAII

Programmer manages memory all

by himself.

Julia

Garbage collection

Julia runtime allocates and frees

data.

We have two con�icting strategies for

memory management. How can we reconcile

them?

A. Khudyakov BAT2C++ 5/ 16

C++ view on Julia's heap

Julia objects:

jl_value_t* val

1 Opaque pointers

2 Could be reclaimed by GC at

any moment

Values could be protected by

placing them into GC root

GC root

struct gc_root {
int size;
jl_values_t** objects[];

};

Roots arranged as linked list

Roots are normally allocated

on stack

Lifetime of rooted object is

duration of function call!

A. Khudyakov BAT2C++ 6/ 16

C++ view on Julia's heap

Julia objects:

jl_value_t* val

1 Opaque pointers

2 Could be reclaimed by GC at

any moment

Values could be protected by

placing them into GC root

GC root

struct gc_root {
int size;
jl_values_t** objects[];

};

Roots arranged as linked list

Roots are normally allocated

on stack

Lifetime of rooted object is

duration of function call!

A. Khudyakov BAT2C++ 6/ 16

Keeping Julia values alive

GC root allocated on stack:

Problems:
1 Values returned from function

are not protected

2 Size of GC root is static!

OK for hand-rolled code

Unacceptable for high level API

Solution:

Create C++ wrapper class which

will protect Julia values from GC.

1 Allocate 1-element GC root on

heap during Julia initialization.

2 It contains

IdDict{Any,Int64}() acting

as reference counter

3 We increment counter on

creation of new wrapper.

4 We decrement on destruction.

A. Khudyakov BAT2C++ 7/ 16

Keeping Julia values alive

GC root allocated on stack:

Problems:
1 Values returned from function

are not protected

2 Size of GC root is static!

OK for hand-rolled code

Unacceptable for high level API

Solution:

Create C++ wrapper class which

will protect Julia values from GC.

1 Allocate 1-element GC root on

heap during Julia initialization.

2 It contains

IdDict{Any,Int64}() acting

as reference counter

3 We increment counter on

creation of new wrapper.

4 We decrement on destruction.

A. Khudyakov BAT2C++ 7/ 16

Keeping Julia values alive

Wrapper object

class Value {

public:

explicit Value(jl_value_t*);

jl_value_t* juliaValue() const;

private:

std::shared_ptr<GCBarrier> m_value;

};

struct GCBarrier : non_copyable {

jl_value_t* m_val;

};

A. Khudyakov BAT2C++ 8/ 16

Conversion between data types

Conversion is generally easy if somewhat verbose unless:

1 Callbacks are involved

OR
2 High performance is desired

Just copy data and be happy about it:

template<>

jl_value_t* toJulia<T>(T x) {

...

template<>

T fromJulia<T>(jl_value_t* x) {

...

A. Khudyakov BAT2C++ 9/ 16

Conversion between data types

Conversion is generally easy if somewhat verbose unless:

1 Callbacks are involved

OR
2 High performance is desired

Just copy data and be happy about it:

template<>

jl_value_t* toJulia<T>(T x) {

...

template<>

T fromJulia<T>(jl_value_t* x) {

...

A. Khudyakov BAT2C++ 9/ 16

Callbacks

Say we want to pass as callback to Julia:

double foo(int, const std::vector<double>&)

Before calling foo:

1 Unpack 1st argument as int

2 Convert 2nd argument from Julia's Array to

std::vector

3 If conversion fails abort

After calling foo:

1 Wrap double into Julia value

A. Khudyakov BAT2C++ 10 / 16

Lets make a closure!

Make wrapper function:

jl_value_t* foo(void* f, jl_value_t* a, jl_value_t* b)

f � function we want to call

a,b � parameters coming from Julia

Function body:

auto fun = (double(*)(int, const std::vector&))(f);

int v_a = fromJulia(a)

std::vector<double> v_b = fromJulia(a);

double r = fun(v_a, v_b);

return toJulia(r);

A. Khudyakov BAT2C++ 11 / 16

Making callbacks

Of course we'll template everything so in the end API will look like:

template<T>

jl_value_t* wrapFunction(T(*)());

template<T,A>

jl_value_t* wrapFunction(T(*)(A));

template<T,A,B>

jl_value_t* wrapFunction(T(*)(A,B));

To do:

Calling object methods

Making closures (but in C++ it again means calling object

methods)

A. Khudyakov BAT2C++ 12 / 16

Gorilla

A. Khudyakov BAT2C++ 13 / 16

Designing API

No C++ wrappers for BAT2 so far

Design guidelines

We can map Julia values onto C++ objects

Julia inheritance of abstract types maps to

C++ inheritance

No direct correspondence for multimethods

Use Julia introspection to avoid handwritten

boilerplate?

How to expose generation of samples?

A. Khudyakov BAT2C++ 14 / 16

No banana yet

A. Khudyakov BAT2C++ 15 / 16

Conclusions

What we have:

Embedding of Julia is mostly understood.

We have half done C++ library for embedding Julia.

And what we don't:

Any working program

What should we do?

Try to use embedded Julia for
something!

Usage should guide requirement. Library writer without

users is blind.

A. Khudyakov BAT2C++ 16 / 16

Conclusions

What we have:

Embedding of Julia is mostly understood.

We have half done C++ library for embedding Julia.

And what we don't:

Any working program

What should we do?

Try to use embedded Julia for
something!

Usage should guide requirement. Library writer without

users is blind.

A. Khudyakov BAT2C++ 16 / 16

