BAT.jl

Multi-proposal Monte Carlo

Current status and plan for future development

Currently implemented algorithms:

• Tjelmeland's "Multi-Proposal MCMC"

based on: Using All Metropolis-Hastings Proposals to Estimate Mean Values [Tjelmeland, (2004)]

• Liu's "Multiple-Try Metropolis"

• based on: The Multiple-TryMethod and Local Optimization in Metropolis Sampling [Liu, Liang, Wong, 2000]

Multi-Proposal MCMC

- Large wealth of samples for the final estimator:
 - propose multiple samples
 - keep all samples with specific weights
 - rejection probability for next sample in chain is approx. 0
- Parallelization between steps
- Shorter burn-in phase
- Highly dependent on number of proposed samples and acceptance ratio for tuning
- Tricky selection of proposal distribution
- Ad-hoc tuning for different distributions

Multi-Try Metropolis (MTM)

Let x be the current state, T(x, y) the proposal distribution that propose a new sample y from the current one, and let $\pi(.)$ be the target distribution.

We define the following quantity:

```
w(\mathbf{y}, \mathbf{x}) = \pi(\mathbf{y}) T(\mathbf{y}, \mathbf{x}) \lambda(\mathbf{y}, \mathbf{x})
```

Where $\lambda(x, y)$ is a nonnegative symmetric function that can be chosen by the user. The only requirement is that $\lambda(x, y) > 0$ whenever T(x, y) > 0.

Multiple-try Metropolis

1. Draw k iid trial proposals, y_1, \ldots, y_k , from $T(\mathbf{x}, \cdot)$. Compute $w(\mathbf{y}_j, \mathbf{x})$ for $j = 1, \ldots, k$.

2. Select $\mathbf{Y} = \mathbf{y}$ among the trial set $\{\mathbf{y}_1, \dots, \mathbf{y}_k\}$ with probability proportional to $w(\mathbf{y}_j, \mathbf{x}), j = 1, \dots, k$. Then draw $\mathbf{x}_1^*, \dots, \mathbf{x}_{k-1}^*$ from the distribution $T(\mathbf{y}, \cdot)$, and let $\mathbf{x}_k^* = \mathbf{x}$.

3. Accept y with probability

$$r_g = \min\left\{1, \frac{w(\mathbf{y}_1, \mathbf{x}) + \dots + w(\mathbf{y}_k, \mathbf{x})}{w(\mathbf{x}_1^*, \mathbf{y}) + \dots + w(\mathbf{x}_k^*, \mathbf{y})}\right\}$$
(3)

and reject it with probability $1-r_g$. The quantity r_g is called the *generalized M–H ratio*.

 $w(\mathbf{y}, \mathbf{x}) = \pi(\mathbf{y}) T(\mathbf{y}, \mathbf{x}) \lambda(\mathbf{y}, \mathbf{x})$

 $w(\mathbf{y}, \mathbf{x}) = \pi(\mathbf{y}) T(\mathbf{y}, \mathbf{x}) \lambda(\mathbf{y}, \mathbf{x})$

MTM

Possible choices of $\lambda(y, x)$:

• MTM1:

$$\lambda(\mathbf{x}, \mathbf{y}) \equiv 1$$

• MTM2:

$$\lambda(\mathbf{x}, \mathbf{y}) = \left(\frac{T(\mathbf{x}, \mathbf{y}) + T(\mathbf{y}, \mathbf{x})}{2}\right)^{-1} \longrightarrow \min\left\{1, \frac{\pi(\mathbf{y}_1) + \dots + \pi(\mathbf{y}_k)}{\pi(\mathbf{x}_1^*) + \dots + \pi(\mathbf{x}_k^*)}\right\}$$

• MTM3:

$$\lambda(\mathbf{x}, \mathbf{y}) = \{T(\mathbf{x}, \mathbf{y})T(\mathbf{y}, \mathbf{x})\}^{-\alpha}$$

Directional Sampling

5.1 Random-Ray Monte Carlo

Hit-and-Run Algorithm. For a given current sample \mathbf{X}_t , one does the following: (a) uniformly select a random direction \mathbf{e}_t , (b) sample a scalar r_t from density $f(r) \propto \pi(\mathbf{X}_t + r\mathbf{e}_t)$, and (c) update $\mathbf{X}_{t+1} = \mathbf{X}_t + r_t\mathbf{e}_t$. This algorithm behaves like a random-direction Gibbs sampler, and it tends to be very helpful if the probability landscape of π consists of distinctive modes along noncoordinate directions.

How to generate the random direction?

- At each step of the algorithm, one has a population of samples
- Randomly select two samples and their difference gives the direction
- If you have the gradient of your distribution use it
- Solving a local optimization problem with a finite number of steps (2 or 3) starting form an initial sample in memory set

Directional Sampling

1. Randomly generates a direction (a unit vector) e.

2. Draws $\mathbf{y}_1, \ldots, \mathbf{y}_k$ from the proposal transition $T_{\mathbf{e}}(\mathbf{x}, \cdot)$ along the direction \mathbf{e} . A generic choice is to draw iid samples r_1, \ldots, r_k from $N(0, \sigma^2)$, where σ can be chosen rather large and set $\mathbf{y}_j = \mathbf{x} + r_j \mathbf{e}$. Another possibility is to draw $r_j \sim \text{Unif}[-\sigma, \sigma]$.

3. Conducts the MTM, as described in Section 3.1.