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BAT.jl

Multi-proposal Monte Carlo

Current status and plan for future development 
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Currently implemented algorithms:

● Tjelmeland’s “Multi-Proposal MCMC”
based on: Using All Metropolis-Hastings Proposals to Estimate 
Mean Values [Tjelmeland, (2004)] 

● Liu’s “Multiple-Try Metropolis”
● based on: The Multiple-TryMethod and Local Optimization in 

Metropolis Sampling [Liu, Liang, Wong, 2000]
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Multi-Proposal MCMC

● Large wealth of samples for the final estimator:
● propose multiple samples
● keep all samples with specific weights
● rejection probability for next sample in chain is approx. 0

● Parallelization between steps

● Shorter burn-in phase

● Highly dependent on number of proposed samples and acceptance 
ratio for tuning

● Tricky selection of proposal distribution

● Ad-hoc tuning for different distributions
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Multi-Try Metropolis (MTM)

Let x be the current state, T(x, y) the proposal distribution that 
propose a new sample y from the current one, and let π(.) be the 
target distribution.

We define the following quantity:

w(y, x) = π(y) T(y, x) λ(y, x)

Where λ(x, y) is a nonnegative symmetric function that can be chosen 
by the user. The only requirement is that λ(x, y) > 0 whenever T(x, y) > 
0. 
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T(y, x)
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w(y, x) = π(y) T(y, x) λ(y, x)
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w(y, x) = π(y) T(y, x) λ(y, x)
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T(y, x)
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w(y, x) = π(y) T(y, x) λ(y, x)
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MTM
Possible choices of  λ(y, x):

● MTM1:

● MTM2:

● MTM3:                                 
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Directional Sampling
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How to generate the random direction?

● At each step of the algorithm, one has a population of samples

● Randomly select two samples and their difference gives the 
direction

● If you have the gradient of your distribution use it

● Solving a local optimization problem with a finite number of 
steps (2 or 3) starting form an initial sample in memory set
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Directional Sampling
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