BAT.jI

Multi-proposal Monte Carlo

Current status and plan for future development

Currently implemented algorithms:

- Tjelmeland's "Multi-Proposal MCMC"
based on: Using All Metropolis-Hastings Proposals to Estimate Mean Values [Tjelmeland, (2004)]
- Liu's "Multiple-Try Metropolis"
- based on: The Multiple-TryMethod and Local Optimization in Metropolis Sampling [Liu, Liang, Wong, 2000]

Multi-Proposal MCMC

- Large wealth of samples for the final estimator:
- propose multiple samples
- keep all samples with specific weights
- rejection probability for next sample in chain is approx. 0
- Parallelization between steps
- Shorter burn-in phase
- Highly dependent on number of proposed samples and acceptance ratio for tuning
- Tricky selection of proposal distribution
- Ad-hoc tuning for different distributions

Multi-Try Metropolis (MTM)

Let \boldsymbol{x} be the current state, $\mathbf{T}(\mathbf{x}, \boldsymbol{y})$ the proposal distribution that propose a new sample y from the current one, and let $\pi($.$) be the$ target distribution.

We define the following quantity:

$$
w(y, x)=\pi(y) T(y, x) \lambda(y, x)
$$

Where $\lambda(x, y)$ is a nonnegative symmetric function that can be chosen by the user. The only requirement is that $\lambda(x, y)>0$ whenever $T(x, y)>$ 0.

Multiple-try Metropolis

1. Draw k iid trial proposals, $\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}$, from $T(\mathbf{x}, \cdot)$. Compute $w\left(\mathbf{y}_{j}, \mathbf{x}\right)$ for $j=1, \ldots, k$.
2. Select $\mathbf{Y}=\mathbf{y}$ among the trial set $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right\}$ with probability proportional to $w\left(\mathbf{y}_{j}, \mathbf{x}\right), j=1, \ldots, k$. Then draw $\mathbf{x}_{1}^{*}, \ldots, \mathbf{x}_{k-1}^{*}$ from the distribution $T(\mathbf{y}, \cdot)$, and let $\mathbf{x}_{k}^{*}=\mathbf{x}$.
3. Accept y with probability

$$
\begin{equation*}
r_{g}=\min \left\{1, \frac{w\left(\mathbf{y}_{1}, \mathbf{x}\right)+\cdots+w\left(\mathbf{y}_{k}, \mathbf{x}\right)}{w\left(\mathbf{x}_{1}^{*}, \mathbf{y}\right)+\cdots+w\left(\mathbf{x}_{k}^{*}, \mathbf{y}\right)}\right\} \tag{3}
\end{equation*}
$$

and reject it with probability $1-r_{g}$. The quantity r_{g} is called the generalized $M-H$ ratio.

X

$w(\mathbf{y}, \mathbf{x})=\pi(\mathbf{y}) T(\mathbf{y}, \mathbf{x}) \lambda(\mathbf{y}, \mathbf{x})$

$w(\mathbf{y}, \mathbf{x})=\pi(\mathbf{y}) T(\mathbf{y}, \mathbf{x}) \lambda(\mathbf{y}, \mathbf{x})$

MTM

Possible choices of $\lambda(y, x)$:

- MTM1:

$$
\lambda(\mathbf{x}, \mathbf{y}) \equiv 1
$$

- MTM2:

$$
\lambda(\mathbf{x}, \mathbf{y})=\left(\frac{T(\mathbf{x}, \mathbf{y})+T(\mathbf{y}, \mathbf{x})}{2}\right)^{-1} \longrightarrow \min \left\{1, \frac{\pi\left(\mathbf{y}_{1}\right)+\cdots+\pi\left(\mathbf{y}_{k}\right)}{\pi\left(\mathbf{x}_{1}^{*}\right)+\cdots+\pi\left(\mathbf{x}_{k}^{*}\right)}\right\}
$$

- MTM3:

$$
\lambda(\mathbf{x}, \mathbf{y})=\{T(\mathbf{x}, \mathbf{y}) T(\mathbf{y}, \mathbf{x})\}^{-\alpha}
$$

Directional Sampling

5.1 Random-Ray Monte Carlo

Hit-and-Run Algorithm. For a given current sample \mathbf{X}_{t}, one does the following: (a) uniformly select a random direction \mathbf{e}_{t}, (b) sample a scalar r_{t} from density $f(r) \propto$ $\pi\left(\mathbf{X}_{t}+r \mathbf{e}_{t}\right)$, and (c) update $\mathbf{X}_{t+1}=\mathbf{X}_{t}+r_{t} \mathbf{e}_{t}$. This algorithm behaves like a random-direction Gibbs sampler, and it tends to be very helpful if the probability landscape of π consists of distinctive modes along noncoordinate directions.

How to generate the random direction?

- At each step of the algorithm, one has a population of samples
- Randomly select two samples and their difference gives the direction
- If you have the gradient of your distribution use it
- Solving a local optimization problem with a finite number of steps (2 or 3) starting form an initial sample in memory set

Directional Sampling

1. Randomly generates a direction (a unit vector) e.
2. Draws $\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}$ from the proposal transition $T_{\mathbf{e}}(\mathbf{x}, \cdot)$ along the direction e . A generic choice is to draw iid samples r_{1}, \ldots, r_{k} from $\mathrm{N}\left(0, \sigma^{2}\right)$, where σ can be chosen rather large and set $\mathbf{y}_{j}=\mathbf{x}+r_{j} \mathbf{e}$. Another possibility is to draw $r_{j} \sim \operatorname{Unif}[-\sigma, \sigma]$.
3. Conducts the MTM, as described in Section 3.1.
