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Multi-proposal Monte Carlo

Current status and plan for future development



Currently implemented algorithms:

* Tlelmeland’s “Multi-Proposal MCMC”

based on: Using All Metropolis-Hastings Proposals to Estimate
Mean Values [Tjelmeland, (2004)]

 Liu’s “Multiple-Try Metropolis”

 based on: The Multiple-TryMethod and Local Optimization In
Metropolis Sampling [Liu, Liang, Wong, 2000]



Multi-Proposal MCMC

Large wealth of samples for the final estimator:
e propose multiple samples
» keep all samples with specific weights
* rejection probability for next sample in chain is approx. O

Parallelization between steps

Shorter burn-in phase

Highly dependent on number of proposed samples and acceptance
ratio for tuning

 Tricky selection of proposal distribution

e Ad-hoc tuning for different distributions



Multi-Try Metropolis (MTM)

Let x be the current state, T(x, y) the proposal distribution that
propose a new sample y from the current one, and let m(.) be the
target distribution.

We define the following quantity:
w(y, x) = 1(y) T(y, x) Aly, x)

Where A(x, y) is a nonnegative symmetric function that can be chosen
by the user. The only requirement is that A(x, y) > 0 whenever T(x, y) >
0.



Multiple-try Metropolis

. Draw k iid trial proposals, yi,...,y%, from T'(x, ).
Compute w(y;,x) for j =1,...,k.

2. Select Y = y among the trial set {y1,...,yx} with
probability proportional to w(y;,x),5 = 1,...,k. Then
draw x7,...,x;_, from the distribution 7'(y,-), and let
X; = X.

3. Accept y with probability

'LU(Y1,X)+'*'+TU(}";HX)} (3)

ro =min< 1, -
i { W(ley)-l‘"'-l"M(XLy)

and reject it with probability 1—r,. The quantity r, 1s called
the generalized M—-H ratio.
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MTM

Possible choices of Ay, x):

e MTM1:
Ax,y) =1
e MTM2:
\xy) = (T(XJ);T(Y,X)) . min{h
e MTM3:

Ax,y) ={T(xy)T(y,x)}
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Directional Sampling

5.1 Random-Ray Monte Carlo

Hit-and-Run Algorithm. For a given current sample X,
one does the following: (a) uniformly select a random di-
rection e;, (b) sample a scalar r; from density f(r)
m(X; + re;), and (c) update X;,1 = X; + r;e;. This algo-
rithm behaves like a random-direction Gibbs sampler, and
it tends to be very helpful if the probability landscape of
7 consists of distinctive modes along noncoordinate direc-
tions.
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How to generate the random direction?

» At each step of the algorithm, one has a population of samples

« Randomly select two samples and their difference gives the
direction

* If you have the gradient of your distribution use it

e Solving a local optimization problem with a finite number of
steps (2 or 3) starting form an initial sample in memory set
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Directional Sampling

1. Randomly generates a direction (a unit vector) e.

2. Draws y1, ...,y from the proposal transition 7, (x, -)
along the direction e. A generic choice is to draw iid sam-
ples r1,...,r, from N(0, 0?), where o can be chosen rather
large and set y; = x + r;e. Another possibility is to draw
r; ~ Unif|—0, 0.

3. Conducts the MTM, as described in Section 3.1.
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