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Relics from the early universe 

We know there is strong evidence from cosmological observations that there is not enough 

known matter/energy in the universe to explain all observations  

 Dynamics of individual galaxy types (rotation curves, velocity dispersions), 

 Haloes of galaxies: formation of galaxies by gravitational collapse can only be 

explained for overall mass content bigger than Jeans mass (not consistent with 𝛺𝑏 

only)! 

 Binary galaxies: dynamics and tidal effects, 

 Galaxy groups: dynamics of galaxies, 

 Gravitational lensing of background galaxies by a cluster (strong lensing), 

 Deformation of typical galaxy shapes by foreground cluster galaxies (weak lensing), 

 Measurement of temperature of intergalactic gas assuming that gas is bound, 

 Structure formation from CMB anisotropies only explainable if there is additional non 

baryonic matter. 

Explain all observations  

 Assume existence of other type(s) of weakly interacting particles not contained in the 

standard model of particle physics.  

If these decouple or are produced non-thermally in the early universe and are still present 

today as (thermal) relic of the early universe 

 Could fulfill the requirements to explain the missing matter problem. 

1. Freeze out of particles: 

How does an expanding universe behave evolve as a function of its particle content 

 need to understand the microscopic behavior of individual components with respect to 

statistical mechanics for a significant number of particles/quanta 

 Quantum mechanics 

 Thermodynamics 

 Cosmology 

The description of a system is simplest if it is in thermal equilibrium. This is in general the 

case if all reactions that the particles in equilibrium undergo go both directions with the 

same rate and if the reaction rates are high enough. 

The history of the universe can be described as evolution through different phases in which 

different contents were in thermal equilibrium. The different phases are connected by phase 

transitions, where individual particle species, i.e. part of the content left equilibrium. 

 Universe can be described by thermo-dynamical parameters: 

T – Temperature s – Entropy density ρ – energy density 𝑔 – ndf , etc. 
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In thermal equilibrium (Each process occurs in both directions with same rate): “Dilute, 

weakly interacting gas approximation 

[note: natural units in the following, incl. 𝑘𝐵] 

 

 Distribution of particle species i follows: 

𝑓𝑖(𝐩) = [exp (
𝐸𝑖−𝜇𝑖

𝑇
± 1)]

−1

, 

Where +1 is valid for Fermi-Dirac and  – 1 for Bose-Einstein statistics and𝜇𝑖 chemical 

potential, 𝐸𝑖 = √𝐩2 + 𝑚𝑖
2 

For number density of particle i: 

𝑛𝑖 =
𝑔𝑖

(2𝜋)3
∫ 𝑓𝑖(𝐩)𝑑3 𝑝 

With 𝑑3𝑝 → 4𝜋√𝐸2 − 𝑚𝑖
2𝐸𝑑𝐸 

 For approximations of non-relativistic (𝑇 𝑚⁄ ≪ 1) particles relation between Temperature 

and number/Energy density can be obtained – both for Bose Einstein and Dirac particles: 

𝑛𝑁𝑜𝑛𝑅𝑒𝑙 = 𝑔𝑖 (
𝑚𝑇

2𝜋
)

3
2

𝑒−𝒎
𝑻  

 For approximations of relativistic (𝑇 𝑚⁄ ≫ 1): 

𝑛𝑅𝑒𝑙 ∝ 𝑔𝑖𝑻
𝟑 

 

Total energy density in universe as function of T: 

Non-relativistic particles: exponentially suppressed  

 Sum over relativistic particles in equilibrium at given T (Stefan Boltzmann law): 

𝜌𝑅𝑒𝑙 ∝ 𝑔𝑒𝑓𝑓(𝑇)𝑇4 

To get 𝑔𝑒𝑓𝑓 (total number of effectively massless degrees of freedom, species with 𝑚𝑖 ≪ 𝑇): 

Need to introduce specific temperature for each particle 𝑇𝑖 (difference if not in thermal 

equilibrium with other particle species!) 

𝑔𝑒𝑓𝑓 = ∑ 𝑔𝑖 (
𝑇𝑖

𝑇
)

4

𝑖=𝑏𝑜𝑠𝑜𝑛𝑠

+ 
7

8
∑ 𝑔𝑗 (

𝑇𝑗

𝑇
)

4

𝑗=𝑓𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠
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Understand which particles are in thermal equilibrium at given T:  

 use entropy density: “Number of possible microstates in given volume (use co-moving!) 

equivalently describing a given thermodynamical/ quantum-mechanical macro-state. 

 Very important: (effective) Number of degrees of freedom of involved partices! 

From definition of entropy: 

𝑑𝑆(𝑉, 𝑇) =
1

𝑇
[𝑑(𝜌(𝑇)𝑉) + 𝑝(𝑇)𝑑𝑉] 

Together with FLRW metric (remember: expanding universe) it can be shown: entropy per 

co-moving volume is conserved: 

𝑎3
𝑑𝑝

𝑑𝑡
=

𝑑

𝑑𝑡
[𝑎3(𝜌 + 𝑝)] 

The entropy density 

𝑠(𝑇) ≡
𝑆(𝑉, 𝑇)

𝑉
=

𝜌(𝑇) + 𝑝(𝑇)

𝑇
 

can be shown to be given by (using equation of state for radiation dominated universe 𝑝 =
𝜌

3
 

and expression for relativistic energy density and pressure): 

𝑠 =
2𝜋2

45
𝑔𝑒𝑓𝑓

𝑠 𝑻𝟑 

where 

𝑔𝑒𝑓𝑓
𝑠 = ∑ 𝑔𝑖 (

𝑇𝑖

𝑇
)

3

𝑖=𝑏𝑜𝑠𝑜𝑛𝑠

+ 
7

8
∑ 𝑔𝑗 (

𝑇𝑗

𝑇
)

3

𝑗=𝑓𝑒𝑟𝑚𝑖𝑛𝑜𝑛𝑠

 

Remember number density ∝ 𝑻𝟑  

 Relation:      𝑛𝛾 ∝ 𝑠 

 

For phase transitions the Boltzmann Transport Equations (BTE) 

𝑳̂[𝑓] = 𝑪[𝑓] 

have to be solved, with 𝑳̂ the Liousville operator for phase space density and 𝑪̂ the collision 

operator containing all possible reactions any particle can perform. This gives the evolution 

of the particle’s phase space functions 𝑓𝑖 = [exp(𝐸−𝜇

𝑇
± 1)]

−1
, 

With the number density 𝑛𝑖(𝑇)and using the representation of the Liousville operator in the 

FLRW metric  the Boltzmann equation can be written as 

(6) 

(2) 

(5) 
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𝑛̇𝑖 + 3
𝑅̇

𝑅
𝑛𝑖 =

𝑔𝑖

(2𝜋)3
∫ 𝑪[𝑓]

𝑑2𝑝

𝐸
 

where 𝑔𝑖 describe the number of internal degrees of freedom of specific particle species 𝑖. 

General case: this is a coupled set of integral-differential equations for the phase space 

distributions of all particle species 𝑖 under consideration! 

We are interested in the particle densities 𝑛𝑝 as a function of time while leaving thermal 

equilibrium. All other content/particles are in the following assumed to be in thermal 

equilibrium.  

In order to scale out the effect of expansion of the universe i.e. to look at the evolution of 

the number of particles in a co-moving volume, the particle density is normalized to entropy: 

𝑌 ≡
𝑛𝑝

𝑠
. 

If one takes into account that entropy is conserved in a co-moving volume, one can show 

that 

𝑛̇𝑝 + 3𝐻𝑛𝑝 = 𝑠𝑌.̇  

As interaction terms between particles will explicitly depend on temperature 𝑇 rather than 

on time, it is also useful to introduce the variable 𝑥 =
𝑚

𝑇
  with 𝑚 an arbitrary energy scale 

but usually chosen as the mass of the particle under consideration. Note that during the 

evolution of the universe 𝑥 has the same direction as time. 

The Boltzmann equation can then be simplified by writing it in terms of   

𝑑𝑌

𝑑𝑥
= −

𝑚 𝑚𝑝𝑙𝑐𝑒𝑓𝑓

𝑥2 · 𝐶(𝑔𝑖, 𝑓𝑖 , 𝑀2),  

with 𝑚𝑝𝑙 the Planck mass and 𝐶(𝑔, 𝑓𝑖, 𝑀2), the collision term as a function the 𝑔𝑖 for all 

particle species involved and 𝑀2 the matrix element for the (set of) reaction(s) under 

consideration.  Note that the collision term is a function of 𝑥. 

Let’s now consider a reaction of a stable particle 𝑝. Only Annihilation and creation can occur 

𝑝𝑝̅ ↔ 𝑋𝑋̅. Here 𝑋 denotes all possible states the particle can decay to. These are assumed to 

stay in thermal equilibrium during the whole process (almost always a good assumption) and 

to have vanishing chemical potential 𝜇. 

Making use of the fact that all particles represented with 𝑋  stay in good approximation in 

thermal equilibrium, the collision operator can be simplified and one can write:  

𝑑𝑌

𝑑𝑥
= −

𝑚 𝑚𝑝𝑙𝑐𝑒𝑓𝑓

𝑥2
〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉𝑠(𝑌2 − 𝑌𝑒𝑞

2 ) 

or 

(7) 

(8) 

(9) 
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𝑛̇𝑝 + 3𝐻𝑛𝑝 = −〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉 [𝑛𝑝
2 − (𝑛𝑝

𝑒𝑞)
2

],  

where 〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉  describes the thermally averaged annihilation cross-section for all 

available channels times the velocity and 𝑌𝑒𝑞 = 𝑛𝑝
𝑒𝑞/𝑠  is the equilibrium number of particles 

𝑛𝑝 per co-moving volume.  

This is intuitive:  

The term 𝑛̇𝑝 is amended by the term 3𝐻𝑛𝑝, taking care of the dilution of the particle species 

due to expansion of the universe.  

The right hand side can be interpreted as:  

In thermal equilibrium 𝑛𝑝 = 𝑛𝑝
𝑒𝑞, meaning that all reactions go both directions with the 

same rate.  

If the particle density 𝑛𝑝  is increasing, the rate 𝑝𝑝̅ → 𝑋𝑋̅ of disappearing particles will be 

given by 𝑛𝑝
2〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉, corrected for the number of particles created in equilibrium 

𝑋𝑋̅ → 𝑝𝑝̅. The square in the density appears since  𝑛𝑝 = 𝑛𝑝̅. 

After some rearrangement: 

𝑥

𝑌𝑒𝑞

𝑑𝑌

𝑑𝑥
= −

𝛤𝐴

𝐻
[(

𝑌

𝑌𝑒𝑞
)

2

− 1], 

to describe the change of 𝑛𝑝 per co-moving volume with decreasing T (increasing time and 

𝑥).  Here 𝛤𝐴 = 𝑛𝑝
𝑒𝑞〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉 is the annihilation rate for the particle species under 

consideration. The expression is controlled by the “effectiveness of annihilations”, given by 

the ratio 
𝛤𝐴

𝐻
  times a measure for deviation from thermal equilibrium. 

We now have to distinguish between particles that are relativistic and non-relativistic during 

deviation from thermal equilibrium.  remember: 

𝑛𝑛𝑜𝑛−𝑟𝑒𝑙 = 𝑔𝑖 (
𝑚𝑇

2𝜋
)

3
2

𝑒−𝑚
𝑇  

for the non-relativistic species (i.e. 𝑥 ≪ 3) and 

𝑛𝑟𝑒𝑙 ∝  𝑇3 

For relativistic particle species (i.e. 𝑥 ≫ 3). 

For both cases 𝛤𝐴 decreases as 𝑇 decreases, exponentially for non-relativistic particles, as 

some power of 𝑇 in the relativistic case. This means that annihilations at some value 𝑥𝑓 

becomes ineffective, roughly once  𝛤𝐴 ≅ 𝐻. Such that for 𝑥 ≲ 𝑥𝑓 we get 𝑌 ≅ 𝑌𝑒𝑞. 

Freeze out of relativistic particles: Limit on the neutrino mass 

For relativistic particle ν: Freeze out occurs at 𝑥𝑓 ≲ 3. (f for frezze out) 

(13) 

(14) 

(12) 
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We see that 

𝑌𝑒𝑞,𝑟𝑒𝑙 =
𝑛𝑒𝑞,𝑟𝑒𝑙

𝑠
∝

𝑇3

𝑠
∝

𝑇3

𝑇3
= 𝑐𝑜𝑛𝑠𝑡. 

is temperature independent, hence not changing in time as long as the particle is relativistic. 

Hence, the asymptotic value 𝑌(𝑥 → ∞) ≡ 𝑌∞ is the equilibrium value at freeze out. 

For 𝑌∞ we find: 

𝑌∞ = 𝑌𝑒𝑞(𝑥𝑓) =
𝑛𝑒𝑞(𝑥𝑓)

𝑠(𝑥𝑓)
=

 𝑔𝜈,𝑒𝑓𝑓 

𝑔𝑒𝑓𝑓
𝑠 (𝑥𝑓)

· 𝑐𝑜𝑛𝑠𝑡. 

 

Using this expression, assuming constant entropy per co-moving volume, the abundance of a 

particle today can then be calculated 

𝑛𝑝,0 = 𝑠0𝑌∞ = 2970 𝑌∞𝑐𝑚−3 = 825
 𝑔𝜈,𝑒𝑓𝑓 

𝑔𝑒𝑓𝑓
𝑠 (𝑥𝑓)

𝑐𝑚−3 

(𝑠0: present entropy density) 

For the present relic mass density 𝜌𝑝,0this translates into 

𝜌𝑝,0 = 𝑠0𝑌∞𝑚 = 2970 𝑌∞ (
𝑚

𝑒𝑉
) 𝑒𝑉 𝑐𝑚−3 

or in terms of critical density  

𝛺𝑝ℎ2 = 0.078
 𝑔𝜈,𝑒𝑓𝑓 

𝑔𝑒𝑓𝑓
𝑠 (𝑥𝑓)

(
𝑚

𝑒𝑉
). 

This can be used to derive an upper limit on the mass density due to known neutrino 

species. We know 𝛺0ℎ2 ≲ 1. Using the decoupling temperature of neutrinos 

 𝑇~ few 𝑀𝑒𝑉 and effective number of degrees of freedom for neutrinos this implies: 

𝛺𝜈𝜈̅ℎ2 =
𝑚𝜈

91.5 𝑒𝑉
 

or 

∑ 𝑚𝜈𝜈̅ ≲ 91.5 𝑒𝑉. 

Note that this solution is only very mildly dependent on the exact process of freeze out, due 

to the flatness of 𝑌𝑒𝑞 as a function of 𝑇 for   𝑥𝑓 ≲ 3. 

Freeze out of non-relativistic particles, cold relics: 

(20) 

(21) 

(22) 
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For non-relativistic freeze out the situation is more complicated and solutions to the 

equations above have to be found numerically as 𝑌𝑒𝑞 is decreasing exponentially with 

decreasing temperature (see Figure below).  

Note that the higher the thermally averaged cross section times velocity of particles 

〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉, the lower the relic abundance will be. This is because deviation from 

equilibrium will happen for a higher  𝑥, where Boltzmann suppression of 𝑌𝑒𝑞 becomes more 

and more relevant. 

It turns out that for a 〈𝜎𝑝𝑝̅→𝑋𝑋̅|𝑣|〉 characteristic for the weak interaction the relic 

abundance for WIMPs with mass 10 –  1000 GeV is approximately  𝛺𝑝𝑝̅ℎ2~1. This is 

sometimes called the WIMP miracle. 

  

 

Freeze out of massive particles. Taken from E.Kolb and S. Turner, The early universe 

 

1. Non-thermal production of cold dark matter particles 

(axions – ALPs): 
Considers spontaneous symmetry breaking: 

broken complex scalar U(1) symmetry (remember Higgs?) 
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If energy density low enough: Field relaxes into minimum of potential. Due to complex field: 

Phase θ is arbitrary!  

In QFT corresponds to introduction of two particles:  

1) “Movement” around potential trough (massless) 

2) Along same θ (massive) 

Excitation of field  particle with mass (second derivative at minimum of potential) 

If Mexican hat potential tilted, for example by non-perturbative QCD effects: 

 

 

 Field is non symmetric about Phase θ  generation of mass 

Mass suppressed by distance between origin of field and minimum of trough: Energy scale of 

symmetry breaking! 

 For very high E  very small mass WISPs (axions, ALPs) 

Movement around minimum is “frictionless” 

relic oscillations expected! 

Remember expansion of universe  Oscillations are damped by now (very small) 

Note: NON-THERMAL Production of local field oscillations,  

i.e. particle population without initial momentum: NON RELATIVISTIC! 

Number density depends on initial alignment of θ after symmetry breaking. 
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