MAGIC Observations of Distant AGNs

Koji Saito

12.03.2010 PPSM Colloquium

MAGIC Telescopes

* MAGIC is currently a largest imaging air Cherenkov telescope in operation (17 m diameter)

* Location: La Palma of Canary Island (Spain) at 2225 m a.s.l.

* Low energy threshold (50 GeV-60 GeV), good sensitivity at low (~100 GeV) energy range

* Commissioning of MAGIC-II, clone of MAGIC-I was finished in 2009 and the stereoscopic operation is ongoing

MAGIC observation of Distant AGNs

The detection of VHE γ -rays from high-redshift AGNs is important, since γ -rays at VHE region from distant sources are expected to be strongly attenuated by the interaction with low energy photons (extragalactic background light (EBL)).

MAGIC observation of Distant AGNs

The detection of VHE γ -rays from high-redshift AGNs is important, since γ -rays at VHE region from distant sources are expected to be strongly attenuated by the interaction with low energy photons (extragalactic background light (EBL)).

* 3C 279: z = 0.536
2007 observations
* 3C 454.3: z = 0.859
2009 <u>stereo</u> observations
* 3C 66A: z = 0.44 (uncertain)
2009/2010 <u>stereo</u> observations

3C279

* One of the brightest sources in all wavelength

* Flat Spectrum Radio Quasar (FSRQ)

* Redshift: z = 0.536

* First blazar discovered with EGRET aboard the Compton Gamma Ray Observatory

* Apparent luminosity ~10⁴⁸ erg/s

* Fast time variation: T ~ 6 hr in EGRET observation

3C 279: MAGIC Observation in 2006

- Observation period: January ~ April of 2006
- Total observation time: 9.7 hr
- Signal detected with 5.8 σ (only one day)
- VHE distant champion!!
- Optical flux:

 $\langle \bullet \rangle$

twice as high as the baseline

2006 spectral index = 4.11 ... provides interesting information for the EBL model

Two extreme EBL model

- Primack et al. 2005, close to the lower limits set by galaxy counts
- Stecker et al. 2006, "fast-evolution" model

Assuming the intrinsic spectral index cannot be harder than 1.5, model parameters can be tuned to give EBL upper limit

SED (spectral energy distribution)

Leptonic model: * One zone EC model fails to reproduce X-ray flux, unusually low B-field (0.03 G) or high Γ factors

 $\langle \bullet \rangle$

* Multi-zone emission seems to be needed

Hadronic model:

* Hadronic model seems to describe the data, but very large jet luminosity is required (10⁴⁹ erg/s)

Maroon: Hadronic

More (multi-wavelength) observation is needed to understand the emission process

3C 279: MAGIC Observation in 2007

 $\langle \bullet \rangle$

In January 2007, since the optical R-band flux reached historically high level, MAGIC observations were triggered

VHE γ -ray flare was detected at only the 16th of January \rightarrow similar to 2006

 $(6.6 \pm 1.8) \times 10^{-10} (E/300 \text{ GeV})^{-\alpha} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}$ $\alpha = 4.00 \pm 0.56$ SED modeling ... ongoing

3C454.3

- * Well known FSRQ
- * Redshift: z = 0.859

* EGRET detected γ -ray emissions several times

* In 2007 intense flaring observed in optical, triggered X-ray observations (Swift), γ-rays (AGILE), those triggered MAGIC

3C454.3

No VHE γ -ray emission was seen, U.L. derived

3C 454.3: MAGIC observations in 2009

optical: rising phase

MAGIC stereo observations: 2009/12/6 ~ 2009/12/11 Total effective ovservation time: 6 hr

3C 454.3: MAGIC observations in 2009

No signal detection, U.L. was derived

 $\langle \bullet \rangle$

3C 66A

- * 3C 66A and 3C 66B are separated by 6' in the sky * 3C 66A:
- Intermediate-frequency peaked BL Lac
- Synchrotron peak is between $10^{15} \sim 10^{16}$ Hz

- Redshift was reported as z = 0.44 (Miller et al. 1978, Lanzetta et al. 1993), although authors were not certain since their estimations are based on only single week line emission

* 3C 66B: Fanaroff-Riley I type radio galaxy with a redshift of z = 0.0215 (Stull et al. 1975)

Previous Observations

RA (h)

02ⁿ26^m

VERITAS Sept. 2007 -Jan. 2008, (4.7 h) Sept. 2008 -Nov. 2008 (28 h) Signal is centered on 3C 66A position

Energy [GeV]

3C 66A: MAGIC observations in 2009/2010

MAGIC stereo observations: 2009 Sept. (4.7 h), Oct. (12 h), Dec. (2.5 h) 2010 Jan. (2.3 h) total: 21.6 h

3C 66A: MAGIC observations in 2009/2010

Variability ... not clear

Signal: 219 \pm 30 events Significance: 5.5 σ

 $\langle \bullet \rangle$

Very preliminary!

3C 66A: MAGIC observations in 2009/2010

Fitted position:

(RA, Dec)=(35.668 deg., 43.000 deg.) Deviation from 3C 66A: 0.03 deg., Probability: 92 % Deviation from 3C 66B: 0.13 deg., Probability: 14 % Spectrum:

 $2.7\pm0.8 \times 10^{-11} (E/200 \text{ GeV})^{\alpha} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}$ $\alpha = 3.80 \pm 0.56$

3C 66A: Fermi skymap

Deviation from 3C 66B: 0.1955 deg.

Summary

* <u>3C 279</u>

- MAGIC confirmed 3C 279 as the farthest VHE γ -ray source
- Energy spectrum indicates low EBL models
- We again detected VHE γ -ray signal in follow-up observation in 2007, behavior of the source is similar to 2006

* <u>3C 454.3</u>

- No VHE γ -ray signals were detected in both 2007 and 2009 observations
- prediction of a sharp cut-off above 20-30 GeV

* <u>3C 66A</u>

- -VHE γ-ray signals were detected with new MAGIC stereoscopic observation
- SED modeling of new data is in progress

With only intrinsic synchrotron photons as targets for $p\gamma$ pion production

Including external photon field from the BLR

Dashed: proton synchrotron and cascade Triple-dot-dashed: μ synchrotron and cascade Dotted: π^0 cascade Dot-dashed: π^{\pm} cascade

 (\bullet)

Abdo et al. 2009, to be submitted

	Source	Z	Туре	Discovery
	M87	0.004	FR-I	HEGRA
	Mrk421	0.031	HBL	Whipple
	Mrk501	0.034	HBL	Whipple
	IES2344+514	0.044	HBL	Whipple
AGINU	Mrk180	0.045	HBL	MAGIC
	IES1959+650	0.047	HBL	7TA
	PKS0548-322	0.069	HBL	HESS
	BL Lac	0.069	LBL	MAGIC
	PKS2005-489	0.071	HBL	HESS
	RGB J0152+017	0.080	HBL	HESS
	PG1553+113	>0.09	HBL	HESS/MAGIC
	W Comae	0.102	LBL	VERITAS
	PKS2155-304	0.116	HBL	Durham
- '	IES1426+428	0.129	HBL	Whipple
	I ES0806+524	0.138	HBL	VERITAS
	IES0229+200	0.139	HBL	HESS
	H2356-309	0.165	HBL	HESS
	IES1218+304	0.182	HBL	MAGIC
	IESI101-232	0.186	HBL	HESS
	IES0347-121	0.188	HBL	HESS
	IES1011+496	0.212	HBL	MAGIC
	S5 0716+714	0.310	LBL	MAGIC
	3C279	0.536	FSRQ	MAGIC
	3C66A/B	0.44?/0.02	IBL/FR-I	VERITAS/MAGIC
	PKS1424+240	not known	IBL	VERITAS

 $\langle \bullet \rangle$