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Detectors: Overview

* Lecture Detectors |
* |ntroduction, overall detector concepts
e Detector systems at hadron colliders

e Basics of particle detection: Interaction with matter

Methods for particle detection

And special feature: Novel acceleration technigques

* Lecture Detectors |l
e Tracking detectors: Basics
e Semiconductor trackers
e Calorimeters

e Muon systems
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Introduction, Overall Concepts
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PP/PP cross sections * Interesting processes are rare compared
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The Conditions at Hadron Colliders
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PP/ pp cross sections

* |nteresting processes are rare compared
to the overall cross section:

U(ta/atot ~/ 10_8
o(H, My = 150GeV) /opor ~ 107

» Very high event rates required!

» Detectors have to be able to cope with
nigh particle rates and corresponding
arge amounts of data

» They have to be able to select (“trigger
on”) interesting events
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Detector Requirements

* Conditions at LHC:
e Bunch crossing rate: 40 MHz (each 25 ns)
e Design Luminosity: L = 10%*em2s71

* pp - cross section: Opp = 100 mb = 1072% ¢m?2
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Detector Requirements

e Conditions at LHC:

e Bunch crossing rate: 40 MHz (each 25 ns)
e Design Luminosity: L = 10%*em2s71

* pp - cross section: Opp = 100 mb = 1072% ¢m?2

w |nteraction rate ~ 1 GHz, approx. 25 p+p - reactions per bunch-crossing

% Particle Physics at Colliders and in the High Energy Universe:
A8y

WS 18/19, 10: Collider Detectors | Frank Simon (fsimon@mpp.mpg.de)



Detector Requirements

* Conditions at LHC:
e Bunch crossing rate: 40 MHz (each 25 ns)
e Design Luminosity: L = 10%*em2s71

* pp - cross section: Opp ~ 100 mb = 10—2% ¢m2

w |nteraction rate ~ 1 GHz, approx. 25 p+p - reactions per bunch-crossing

» Detector requirements:

* high granularity to resolve high particle density

* Fast readout, data buffering directly on detector (“pipelines”), typically
128 BX deep

» Needs a fast decision, if an event is interesting and should be read out for
further processing: a maximum of 3.2 ps to decide

* High granularity results in high data volume: Maximum rate that can be
stored ~ 100 Hz " requires complex triggers!
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LHC: Extreme Conditions

Z->py

... and 25 other collisions
EXPERIMENT

Run Number: 201289, Event Number: 24151616

Date: 2012-04-15 16:52:58 CEST

Normal LHC conditions in
2012 data taking - will get
more in the future!
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* Detection of the final-state particles of the interaction

e Signals generated via electromagnetic interaction with the detector material
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* Detection of the final-state particles of the interaction

e Signals generated via electromagnetic interaction with the detector material

Spur- elekiromagn. Hadronen-  Myonen-
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Tracker: Momentum of
charged particles via
precise measurement of
deflection in magnetic
field
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* Detection of the final-state particles of the interaction

e Signals generated via electromagnetic interaction with the detector material

Spur- elekiromagn. Hadronen-  Myonen-
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Tracker: Momentum of Calorimeters: Energy

charged particles via measurement for

precise measurement of photons, electrons

deflection in magnetic and hadrons by total

field absorption
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* Detection of the final-state particles of the interaction

e Signals generated via electromagnetic interaction with the detector material
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Myonen-Kammer
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o
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B--elektromagn.Kalorimeter

Tracker: Momentum of
charged particles via
precise measurement of
deflection in magnetic
field
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Generic Detector Construction Guide
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

% Particle Physics at Colliders and in the High Energy Universe:
7

WS 18/19, 10: Collider Detectors | Frank Simon (fsimon@mpp.mpg.de)



Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)

4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and
neutral particles
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)
4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and
neutral particles

5. Muon Detectors: Improved tracking and identification of muons
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)

4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and
neutral particles

5. Muon Detectors: Improved tracking and identification of muons

* 1. - 3. have to be inside of a magnet to measure momentum
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)

4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and
neutral particles

5. Muon Detectors: Improved tracking and identification of muons

* 1. - 3. have to be inside of a magnet to measure momentum

 |deally also include the calorimeters inside of the magnet to limit (dead)
material in front of the detectors
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Generic Detector Construction Guide

1.Vertex Tracker as close as possible to interaction point: |dentification of
secondary decays, for example from b-Quarks

2. Main Tracker: Measurement of location and momentum of all charged
particles, some times also with particle ID

3. Particle ID: Time-of-flight measurement, Cherenkov detectors,... (optional)

4. Calorimeter (electromagnetic, hadronic): Energy measurement of charged and
neutral particles

5. Muon Detectors: Improved tracking and identification of muons

* 1. - 3. have to be inside of a magnet to measure momentum

 |deally also include the calorimeters inside of the magnet to limit (dead)
material in front of the detectors

» 6. A big (and strong) magnet!

Particle Physics at Colliders and in the High Energy Universe: . .
% WS 18/19, 10: Collider Detectors | Frank Simon (fsimon@mpp.mpg.de) 8



Detector Systems at Hadron Colliders
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Section [CMS]

Collider Detectors: Cross
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CMS: The Heavy Weight
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Muon
Spectrometer

Hadronic
Calorimeter

Proton

g The dashed tracks
are invisible to
the detector
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ATLAS The blggest Detector in Partlcle Phy5|cs

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

/N \__46m / -
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| IIIustratlon CERN
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Ap-Byz4t

Basics of Particle Detection:
Interaction with Matter
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Energy Loss | In Matter Bethe-BIoch

. The Bethe- Bloch Formula descrlbes energy Ioss by |on|zat|on

* Applicable in intermediate

2 energy range
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gl00 =
e = Bethe-Bloch Radiative 2 5 ]
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Material Dependence of Energy
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* Simple approximation: Energy loss of

MIPs (By ~ 3):

1-2 MeV g1 cm?2 (exception: H)
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Energy Loss: A Closer Look

* Bethe-Bloch only gives the mean value!

» Energy loss is a statistical process
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Energy Loss: A Closer Look

* Bethe-Bloch only gives the mean value!

» Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization
< Depending on the momentum transfer, a single or multiple free electrons are
created

% Particle Physics at Colliders and in the High Energy Universe:
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Energy Loss: A Closer Look

* Bethe-Bloch only gives the mean value!
» Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization
< Depending on the momentum transfer, a single or multiple free electrons are

created

= Distinguishing primary and secondary ionization:

secondary ionization

prlm.ary |c?n|zaltlor1 » originating from high-energy
. P0|ssqn|an distributed # primary electrons
. per unit Iength » Sometimes the energy is
* Large fluctuations of sufficient for a clearly visible
energy loss per secondary track: § electron
collision
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Energy Loss: A Closer Look

* Bethe-Bloch only gives the mean value!

» Energy loss is a statistical process

On the microscopic level: discrete scatterings, leading to ionization
< Depending on the momentum transfer, a single or multiple free electrons are
created

= Distinguishing primary and secondary ionization:

secondary ionization

» originating from high-energy
primary electrons

» Sometimes the energy is
sufficient for a clearly visible
secondary track: 6 electron

primary ionization
* Poissonian distributed
. per unit length
e Large fluctuations of
energy loss per
collision

total ionization =primary ionization + secondary ionization

In gases (STP) typically 30 primary reactions per cm, 90 electrons per cm

% Particle Physics at Colliders and in the High Energy Universe:
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* Example for a delta electron in a bubble
chamber: clearly visible range!

Frank Simon (fsimon@mpp.mpg.de)

20



Energy Loss in Thin Layers

* The large range of the energy loss in individual reactions results in large
variations of the energy loss in thin detectors:

e A broad maximum: Collisions with relatively small energy loss

* A long tail to high energy loss: few collisions with large energy loss, 6 electrons

% Particle Physics at Colliders and in the High Energy Universe:
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Energy Loss in Thin Layers

* The large range of the energy loss in individual reactions results in large
variations of the energy loss in thin detectors:

e A broad maximum: Collisions with relatively small energy loss

* A long tail to high energy loss: few collisions with large energy loss, 6 electrons

A/x (MeV g_l sz)

0.50 1.00 1.50 2.00 2.50
! A I L I l
1.0 AN 500 MeV pion in silicon The energy loss in thin layers was
. 2, : :
I AN 640 um (149 mg/em?) - 7 first described by Landau:
0.8 S 320 um (74.7 mg/cm®) _
- \ 160 um (37.4 mg/cm?) - Landau distribution
= i AN\ e 80 um (18.7 mg/cm?) ]
306 A\ .
~ L -] 1» .
0.4F - R A — 1
- ' l\fi(fan energy - ! Thln absorber- ‘
i | /o 0ss rate : |
0 2—_ Ap/X I N <AE> < ~ 10 Tmax
wn e -
0.0 | | ] | I-fl | I 1 111 I 111 1 I | I | I 111 1 | .| I 1 11 1 1 11 1 n ~
- p— 500 00 = to  For 500 MeV pions: Tmax ~ 9 MeV
2 (Mean energy loss in 9 mm of Si)
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Photons: Interactions

photo effect Compton scattering pair creation
- e+
o
o
v nucleus
energy threshold:

2 me = ~1.022 MeV

emm— = = e i — ——
Particle Physics at Colliders and in the High Energy Universe: . .
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Photons: Interactions

photo effect Compton scattering

* |n contrast to dE/dx for charged particles:
“All or nothing” reactions

Particle Physics at Colliders and in the High Energy Universe:
7 WS 18/19, 10: Collider Detectors |

pair creation

e+
-

nucleus
energy threshold:

2 me = ~1.022 MeV
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Photons: Interactions

photo effect Compton scattering pair creation
e+
o
o
v nucleus
energy threshold:

2 me = ~1.022 MeV

* |n contrast to dE/dx for charged particles:
“All or nothing” reactions

<~ Reduction of photon intensity when traversing matter:

I(ZL') — [06_‘””
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Photon Energy

Particle Physics at Colliders and in the High Energy Universe:

WS 18/19, 10: Collider Detectors |

-8-—1

= 050}

(XgNa/A

0.25 1

0 0.25 0.5 0.75 1

* At high energies pair creation dominates by far

* Low energies:
» photoelectric effect
e Coherent scattering: Rayleigh scattering
 Compton scattering

e nuclear excitation
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Electrons: Energy Loss

I YT T T | Illlllll | LR

Positrons

Lead (Z=82)

Bremsstrahlung

l[lllllllllll[

P051.tr.on >
annihilation
| | L1l 111l

E (MeV)

e Critical energy: The energy where

lonization energy loss equals
radiative losses through
Bremsstrahlung
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high energies
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Electrons and Photons: Radiation Length

* The relevant length scale: one radiation length

e Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and
ete- - pair creation, respectively)

Particle Physics at Colliders and in the High Energy Universe:
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Electrons and Photons: Radiation Length

* The relevant length scale: one radiation length
e Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and
ete- - pair creation, respectively)
* Defined as the amount of matter that has to be traversed such that
e an electron loses all but 1/e of its energy via Bremsstrahlung

* 7/9 of the mean free path for pair creation for high-energy photons
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Electrons and Photons: Radiation Length

* The relevant length scale: one radiation length

e Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and
ete- - pair creation, respectively)

* Defined as the amount of matter that has to be traversed such that
e an electron loses all but 1/e of its energy via Bremsstrahlung

* 7/9 of the mean free path for pair creation for high-energy photons

e X, — 716.4 A 9_ A
empirical: 0 = Z(32)in(287/VZ) om? 72
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Electrons and Photons: Radiation Length

* The relevant length scale: one radiation length

e Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and
ete- - pair creation, respectively)

* Defined as the amount of matter that has to be traversed such that
e an electron loses all but 1/e of its energy via Bremsstrahlung

* 7/9 of the mean free path for pair creation for high-energy photons

e X, — 716.4 A 9_ A
empirical: 0 = Z(32)in(287/VZ) om? 72

* Also relevant for the description of multiple coulomb scattering
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Electrons and Photons: Radiation Length

* The relevant length scale: one radiation length

e Describes high-energy electrons and photons (Energy loss via Bremsstrahlung and
ete- - pair creation, respectively)

* Defined as the amount of matter that has to be traversed such that
e an electron loses all but 1/e of its energy via Bremsstrahlung

* 7/9 of the mean free path for pair creation for high-energy photons

e X, — 716.4 A 9_ A
empirical: 0 = Z(32)in(287/VZ) om? 72

* Also relevant for the description of multiple coulomb scattering

e |s usually given in g/cm2, typical values:
e Air: 36.66 g/cmz2, corresponds to ~ 300 m
* Water: 36.08 g/cm2, corresponds to ~ 36 cm
e Aluminium: 24.01 g/cmz2, corresponds to 8.9 cm

e Tungsten: 6.76 g/cm2, corresponds to 0.35 cm
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Methods of Particle Detection
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Spatial Resolution

Incid'it Particle e Multi-Wire
S Proportional
PRI . Counter MWPC
//%/// // * G. Charpak 1968
Anode Sense Wires
/ / (NP 1992)
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Spatial Information through Timing: Drift Chamber

v
" A e
Screening ‘ , | i T~ Cathode
electrodes | LA drift wires

Field wire Anodic wire Field wire
- HV 1 +HV 2 - HV 1

Fig. 6.16. Drift chamber design using interanode field wires (from Breskin et al. [6.22])

* |f the time of passage of a particle is known from external measurements
(trigger!) one can determine the location based on the arrival time of the charge

cloud at the anode wire
* Prerequisite: Field distribution, and through that also drift velocity profile in gas

volume well known

Particle Physics at Colliders and in the High Energy Universe: . .
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Chamber for Collider Detectors

_ e —

* Solenoidal magnetic
field for momentum
measurement parallel to
chamber wires

x
X
X
Fs
X
x
X
X
x

Abb. 4.41 Prinzipieller Aufbau einer zylindrischen Driftkammer. Die

Abbildung zeigt einen Schnitt durch die Kammer senk-
recht zu den Drahten.

Particle Physics at Colliders and in the High Energy Universe: . .
% WS 18/19, 10: Collider Detectors | Frank Simon (fsimon@mpp.mpg.de) 30

= e . 5 e < —— = — — -



e o o o o o P ! Char,ge
Sl i G g T density
° o’ o+ $ | = s 8 B

+ + + | - - - - C)

/ \
/Donor \Acceptor
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>4 Electric
% = = 1 Field

w Fermi level d) S
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* By combining silicon with different dopants you get a PN junction
 Donor (e.g. Phosphorus) provides electrons: n-doping
* Aceptor (e.g. Boron) provides holes: p-doping

 The charge excess gets neutralized on contact, a depletion zone and a
corresponding electric field develops at the junction

1
”w
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Semiconductor Detectors: Charge Collection

Dezp;iteion * An external bias voltage
without Increases the depletion zone by

removing all charge carriers

» Created electrons and holes

I
|
|
| P
|
|

1 B move to the contacts without
recombining with the Si:
Depletion development of a signal
Zone ~——>l
with
Bias

* Through-going particles produce electron-hole pairs (in Si: 3.6 eV required
per pair, for comparison: 20 €V - 40 €V in gas)

* The high density and low ionization threshold allows to build compact
detectors with excellent spatial resolution

Particle Physics at Colliders and in the High Energy Universe:
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Strip Detectors

e

_"'_D_ 1;,_‘9_ Readout

Electronics

lum Aluminium

O VRS L SR 85 P 0.2um Si0,
p*-Implantation (Boron)
Si-crystal

(n-type)

n*-Implantation (Arsenic)

1em Aluminium

"bond pads”
=2
¢
E
N
t20um ¥ Fig. 10.16. Layout of a micro-strip detector and readout
—— 36mm ——n strips (from Hyams et al. [10.14])
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Scintillators

- organic : * Scintillators emit light when
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Scintillation Detectors

_ e —

Scintillator PMT

= - Light quide

Fig. 9.7. The fwisted light guide. Many strips of light guide material are
glued on to the edge of the scintillator and then twisted 90° so as to fit
onto the PM face

* Classical principle: Detection of scintillation light
with photo multipliers

e today these are more and more replaced by
silicon-based photon detectors

o Scintillators (in particular plastic scintillators)
provide a fast signal, ideal for trigger detectors

Particle Physics at Colliders and in the High Energy Universe:
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Fig. 8.1. Schematic diagram of a
photomultiplier  tube (from
Schonkeren [9.1])
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Silicon-Based Photon Detection

* Silicon detectors can also be used to detect visible photons, but:
* Photo effect only creates a single electron-hole pair (very different from the
situation with charged particles): Amplification is crucial!
» The usual charge amplification of up to ~100 reachable in silicon is insufficient to
detect single photons with high efficiency n

Particle Physics at Colliders and in the High Energy Universe: . .
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Zit

36



Silicon-Based Photon Detection

* Silicon detectors can also be used to detect visible photons, but:

* Photo effect only creates a single electron-hole pair (very different from the
situation with charged particles): Amplification is crucial!

» The usual charge amplification of up to ~100 reachable in silicon is insufficient to

detect single photons with high efficiency n
Si Resistor Ve AI-conductgr
n' SiO
/

Avalanche Photo Diode APD
A

= Linear 4 Geié:jer

© mode 1 mode

g 7
- Gain ~ 100 p-

: Guardring n
No Gain Substrate p+
o}
>

Reverse Bias Voltage
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New Photon Sensors: Silicon Photomultipliers

* Highest amplification (~ 106) by running APDs in Geiger mode: a single photon
triggers a discharge, the diode operates in digital mode: Yes/No, no
dependence of the current on the number of photons

% Particle Physics at Colliders and in the High Energy Universe:
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New Photon Sensors: Silicon Photomultipliers

* Highest amplification (~ 106) by running APDs in Geiger mode: a single photon
triggers a discharge, the diode operates in digital mode: Yes/No, no
dependence of the current on the number of photons

* The trick: Put many small APDs on a chip, read out the summed-up signal

* Easy handling: Only one channel (as a PMT, hence the name)

* Extreme amplification: Detection of single photons not a problem!

V.. Al-conductor

Si Resistor
n+

+
N X
Substrate p+
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* 10 years ago still

“exotic”; CALICE the first HEP instrumentation collaboration

to adopt these devices (more next lecture)

* Today: Well-established manufactures, wide use also outside of HEP

[ o iy i, 1, ey
£ B By By B, ST Wy W TN WY -
e S S I
3!
-
.
.

[ 5o B B BB S g S W W W,
:
. B

M B U B W B K W B, WE,

.) A T, T, B _ WA i A s - e

T o -

R e s s e e T
P e s s et e i S S S S e B
m‘v-\‘, LA e R S
.‘M"&‘;")"»‘;"".-."~%.~l”"v“‘v'~"
s s S S S T S G S S S Tk S S S S Sl -, -

: g . L N 0 gl S s
B ey g et g A o i Sl g
- T~ T Wy g, T W O

I S B Tty PO B Wy Wy Wy W W W

l ; B e N e o o o
e e Rt

T T @, W MR _BE_ N W B

‘.0 e P B B W, T W W G - . -
s I S S BN N R4

3 Wy i S A W T W 0
O -
B Bl T B S, B TN TR

. 1 W B A e e S

B

- we s

- e em
L A Ay

. - -

iy, iy ol o, i, o
iy, A e

ML,

o -
A N

. o=

Si Resistor

Al - conductor

Particle Physics at Colliders and in the High Energy Universe:
WS 18/19, 10: Collider Detectors |

=

Frank Simon (fsimon@mpp.mpg.de) 38



low light intensity
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Other Methods for Particle D

e Almost no limit for your creativity -

Various effects originating from the
interaction of particles with matter

can be exploited:

e Cherenkov light for the accurate
measurement of particle velocity

e Transition radiation for velocity
measurement

Abb. 6.23

emm— === e s
Particle Physics at Colliders and in the High Energy Universe:
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Abb. 6.22 Prinzipieller Aufbau eines Ubergangsstrahlungsdetektors.
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Prinzipieller Verlauf der Haufigkeitsverteilung des Ener-
gieverlustes hochenergetischer Elektronen fiir einen Uber-
gangsstrahlungsdetektor mit Radiator und “Ersatzradia-
(nach [143]).
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Novel Acceleration Techniques

* Special Feature, by popular demand...

Particle Physics at Colliders and in the High Energy Universe:
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Plasma Wakefield Acceleration

_—_—
_—— e e e =

* For high-energy linear colliders: Need much higher acceleration gradient to go

significantly beyond ~ 1 TeV beams a Dispersion (mm)
i ] -18 -16 -14 -12 -10 -8
* Conventional accelerating structures e .
nergy loss Energy gain
limited at ~ 100 MV/m or below - R
-2 Scalloping of the beam
£
{; -1
3 § 0
electron Lo
beam '
2
b 3
. . . = 180 120 60
* Demonstration of high energy acceleration 1o Charge density (-e m?) -
of electrons at SLAC: E-164X -
» doubling of beam energy observed: % 108 | :
40 GeV energy gain over less than 1 m of £ perment — |
plasma -> ~50 GV/m Ml

. 60 70 80 90 100
Electron energy (GeV)
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Laser Plasma Accelerator
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* Today: can routinely produce ~ GeV beams
with good quality with industrial lasers

e but: low power - 50 J in a laser pulse, vs
MJ beams for partlcle phyS|cs

3
‘!z
!

Plasma channel

Laser pulse
20? TW -1 PW
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Amazingly compact

e ———————
e

* A few cm of plasma give the same energy of 100 m of superconducting LINAC

~ RPN, L

- -~
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Even smaller Accelerator on a Ch|p

Dlelectrlc Accelerator

phase front

Elecron  |3ser beam
propagation
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phase front
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* Need to get the energy into the plasma

o Lasers - used for extreme gradients over very short distances (~ mm)

« Beams - Much higher power - Long acceleration distances possible

> |dea followed at MPP: Use protons to drive plasma: Very high energy available!

focusing quadrupoles

electron proton
bunch bunch

Li gas cell

Particle Physics at Colliders and in the High Energy Universe:
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Plasma Wakefield Acceleration

* Need to get the energy into the plasma

e Lasers - used for extreme gradients over very short distances

| Key challenges (so far unsolved) for all techniques:

How to get very sharp energy distributions, high repetition rate,
high currents and good focusing?
How to accelerate positrons with a comparably high gradient?

Or, in short:
How to get high luminosity for a collider?

v o /
L1 gas cell
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Summary

Detector systems at colliders detect stable and long-lived particles
Observables are energy, momentum, time of flight; tracks and secondary
vertices and particle identification

A central component of all detectors is the magnetic field - Solenoids are
standard, but other solutions are used as well

The most commonly used mechanism is ionization by charged particles
e Described by the Bethe-Bloch Equation

Many different technigques are used for particle detection

 Gas-filled ionization chambers, multi-wire chambers and drift chambers
e Semiconductor detectors

o Scintillators with suitable photon detectors

e Transition radiation detectors, Cherenkov detectors, ...
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Summary

Detector systems at colliders detect stable and long-lived particles
Observables are energy, momentum, time of flight; tracks and secondary
vertices and particle identification

A central component of all detectors is the magnetic field - Solenoids are
standard, but other solutions are used as well

The most commonly used mechanism is ionization by charged particles
e Described by the Bethe-Bloch Equation

Many different technigques are used for particle detection

 Gas-filled ionization chambers, multi-wire chambers and drift chambers

e Semiconductor detectors

o Scintillators with suitable photon detectors

e Transition radiation detectors, Cherenkov detectors, ...

Next Lecture: Collider Detectors Il, F. Simon, 07.01.2019
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