Future Linear Colliders Physics - Machines - Detectors

Lorenz Emberger

IMPRS Young Scientist Workshop December 2018

Status of High Energy Collider Physics

Lorenz Emberger

Discovery of the Higgs boson in 2012 \implies observed all SM predicted particles

 \Rightarrow we are left without a clear guidance in HE collider physics

Status of High Energy Collider Physics

Go to higher energies:

• Direct production of new particles

Lorenz Emberger

Discovery of the Higgs boson in 2012 \implies observed all SM predicted particles

 \Rightarrow we are left without a clear guidance in HE collider physics

Status of High Energy Collider Physics

Go to higher energies:

Direct production of new particles

Lorenz Emberger

- Discovery of the Higgs boson in 2012 \implies observed all SM predicted particles
 - \Rightarrow we are left without a clear guidance in HE collider physics

• Rare processes

Why Linear e+e- Colliders ?

Requirements for highest precision:

- Clean events, low BG \implies QCD background in hadron colliders
- Defined initial state \implies compound particles in hadron colliders

und in hadron colliders cles in hadron colliders

→ bb

Why Linear e⁺e⁻ Colliders ?

Requirements for highest precision:

- Clean events, low BG \implies QCD background in hadron colliders
- Defined initial state \implies compound particles in hadron colliders

Solution: Use electrons

• Problematic in a circular collider \implies Synchrotron rad. increases with E⁴/m⁴

Why Linear e⁺e⁻ Colliders ?

Requirements for highest precision:

- Clean events, low BG \implies QCD background in hadron colliders
- Defined initial state \implies compound particles in hadron colliders

Solution: Use electrons

- Problematic in a circular collider \implies Synchrotron rad. increases with E⁴/m⁴
- Use linear collider:

No synchrotron radiation, power consumption scales linearly with E

Polarization of e⁺ and e⁻ for background suppression

Well suited for staging

Physics Cases - Higgs Factory

Maximum of ZH production (Higgsstrahlung) at ~250GeV

HZ HZ 1HZ 0 3000 √S [GeV]

Physics Cases - Higgs Factory

Maximum of ZH production (Higgsstrahlung) at ~250GeV

<u>Model independent</u> way of measuring the total $e^+e^- \rightarrow ZH$ cross-section and g_{hZZ}

 \implies low BG, select events solely on Z fourmomentum (recoil mass technique)

$$e^+e^- \to h Z \qquad Z \to l^+$$

$$M_h^2 = (p_{cm} - (p_{l^+} + p_{l^-}))^2$$

Lorenz Emberger

 $l^{-}l^{-}$

2

HZ HZ $\int 3000$ $\sqrt{s} [GeV]$

Physics Cases - Higgs Factory

Maximum of ZH production (Higgsstrahlung) at ~250GeV

<u>Model independent</u> way of measuring the total $e^+e^- \rightarrow ZH$ cross-section and g_{hZZ}

 \implies low BG, select events solely on Z fourmomentum (recoil mass technique)

$$e^+e^- \to h Z \qquad Z \to l^+$$

$$M_h^2 = (p_{cm} - (p_{l^+} + p_{l^-}))^2$$

Physics Cases - Higgs Couplings

Possibility to measure couplings with < 1% precision

Model dependent and independent fits

Many models predict deviations of few percent

Physics Cases - Top Quark

• <u>tt-threshold at ~350 MeV:</u> threshold scan enables precision measurements on top mass and width (500MeV @ LHC \implies 50MeV @ ILC)

Physics Cases - Top Quark

- <u>tt-threshold at ~350 MeV:</u> threshold scan
- couplings

Physics Cases - Top Quark

- <u>tt-threshold at ~350 MeV:</u> threshold scan
- couplings

changing neutral current decays (new physics)

Physics Cases - Higgs Self Coupling

Higgs mechanism predicts self-interaction:

• Probe coupling parameter to validate SM

 Find deviations from SM expectation to open a window for new physics

Physics Cases - Higgs Self Coupling

Higgs mechanism predicts self-interaction:

- Probe coupling parameter to validate SM
- Find deviations from SM expectation to open a window for new physics
- Latest results constrain a deviation to be within -5 and +12.1

Physics Cases - Beyond Standard Model

- Direct and indirect detection of new physics 1.
 - Top electroweak coupling, flavour violating NC interactions
 - Chargino pair production or higgsino due to clean environment

Physics Cases - Beyond Standard Model

- 1. Direct and indirect detection of new physics
 - Top electroweak coupling, flavour violating NC interactions
 - Chargino pair production or higgsino due to clean environment

- Dark matter 2.
 - e.g. mono-photon events with low background

The International Linear Collider - ILC

Mountain region north of sendai

ILC Accelerator Technology

Acceleration of particles:

- ~16000 Niobium superconducting RF cavities
- Gradient of ~ 35 MV/m, operated at 2K

ILC Accelerator Technology

<u>Acceleration of particles:</u>

Production of electrons:

Emission and polarisation of electrons by a laser illuminated GaAs photocathode

- ~16000 Niobium superconducting RF cavities
- Gradient of ~ 35 MV/m, operated at 2K

ILC Accelerator Technology

<u>Acceleration of particles:</u>

Production of electrons:

Emission and polarisation of electrons by a laser illuminated GaAs photocathode

Lorenz Emberger

- ~16000 Niobium superconducting RF cavities
- Gradient of ~ 35 MV/m, operated at 2K

Production of Positrons:

- An up to 3TeV linear collider based on drive beam acceleration technology
- Design Luminosity: 5.9 x 10³⁴ cm⁻²s⁻¹ @ 3TeV
- Developed as possible future project at CERN first decision in 2019/2020

Lorenz Emberger

Beamline for "drive beam":

- Only ~2.3GeV, but very high peak current of ~100A
- Electrons guided through cavities, induced RF wave is coupled to accelerating structure

- 24 sections of 876m long modules for each linac
- Accelerating gradient of 100MV/m

Lorenz Emberger

Beamline for "drive beam":

Electrons guided through cavities, induced RF wave is coupled to accelerating structure

Detectors for Future Linear Colliders

• General purpose CMS like detector systems

Detectors for Future Linear Colliders

- General purpose CMS like detector systems
- Only one IP in a linear collider \implies proposed push-pull system

Detectors for Future Linear Colliders

- General purpose CMS like detector systems
- Only one IP in a linear collider \implies proposed push-pull system
- 3-4% jet energy resolution (W/Z separation) design driver

Lorenz Emberger

0.0

Lorenz Emberger

• Classical calorimetry: add up all the energy depositions in the calorimeters

 \implies 70% of the energy in a jet is deposited in the worst calorimeter

- On average 60% charged particles, 30% gammas and 10% hadrons in a jet
- Particle flow approach:
 - Increase granularity in calorimeters
 - 2. Measure different particles with best suited system

Classical calorimetry: add up all the \bullet energy depositions in the calorimeters

 \implies 70% of the energy in a jet is deposited in the worst calorimeter

[M. Thompson]

- Energy resolution determined by miss-identification of particles (confusion)
- Particle flow first used in ALEPH, but drives the detector design of future colliders

HCAL Prototype

CALICE highly granular analog hadronic calorimeter (AHCAL)

HCAL Prototype

CALICE highly granular analog hadronic calorimeter (AHCAL)

Lorenz Emberger

IMPRS Young Scientist Workshop - December 2018

HCAL Prototype

Lorenz Emberger

Hadronic shower of a 60 GeV Pion

Low energy deposition

High energy deposition

Prospects for ILC and CLIC

Discussions on 250 GeV ILC in Japan:

- Candidate site: Kitakami
- Await statement in late 2018 (basically now)
- Evaluation of staging possibilities to lower project entry costs

After positive response:

- ~4 years of preparation
- ~9 years of construction

Prospects for ILC and CLIC

Discussions on 250 GeV ILC in Japan:

- Candidate site: Kitakami
- Await statement in late 2018 (basically now)
- Evaluation of staging possibilities to lower project entry costs

After positive response:

- ~4 years of preparation
- ~9 years of construction

Lorenz Emberger

CLIC

CLIC: Wait for update of European Strategy for **Particle Physics**

Summary

- Rich physics program to complement LHC
- Precision measurements to possibly detect SM deviations
- Staging capability to increase energy and match funding
- Detector design driven by particle flow approach
- Awaiting decisions on ILC in 2018 and on CLIC in 2019/20

Backup

