Stephan Jahn¹

¹Max-Planck-Institut für Physik, München

IMPRS Young Scientists Workshop at Castle Ringberg

December 4, 2018

¹sjahn@mpp.mpg.de

Outline

current status

- measurements by ATLAS and CMS
- Standard Model predictions
- top-quark contributions at two loop level
 - ▶ interference Z- and Higgs-boson production
 - computational strategy

The ATLAS Collaboration [1709.07703]

Ringberg December 2018

Ringberg December 2018

Example Diagrams for pp \rightarrow ZZ in the Standard Model

LO

- ▶ order counting in at cross-section (amplitude²) level
- ► corrections in quantum chromodynamics (QCD)
- *inclusive* production $(pp \rightarrow ZZ + X)$

Example Diagrams for $pp \rightarrow ZZ$ in the Standard Model

LO NLO

- ▶ order counting in at cross-section (amplitude²) level
- ► corrections in quantum chromodynamics (QCD)
- inclusive production $(pp \rightarrow ZZ + X)$

Example Diagrams for pp \rightarrow ZZ in the Standard Model

LO

- order counting in at cross-section (amplitude²) level
- ► corrections in quantum chromodynamics (QCD)
- *inclusive* production $(pp \rightarrow ZZ + X)$

Order Counting

$$\begin{split} \sigma_{pp \longrightarrow ZZ} \propto \left| A^{(0)}_{q\bar{q} \rightarrow ZZ} + g_s^2 A^{(2)}_{q\bar{q} \rightarrow ZZ} + ... \right|^2 \\ &+ \left| g_s A^{(1)}_{q\bar{q} \rightarrow ZZg} + g_s^3 A^{(3)}_{q\bar{q} \rightarrow ZZg} + ... \right|^2 \\ &+ \left| g_s A^{(1)}_{qg \rightarrow ZZq} + g_s^3 A^{(3)}_{qg \rightarrow ZZq} + ... \right|^2 \\ &+ \left| g_s^2 A^{(2)}_{gg \rightarrow ZZ} + g_s^4 A^{(4)}_{gg \rightarrow ZZ} + ... \right|^2 \\ &+ ... \end{split}$$

Probing the Electroweak Sector of the Standard Model

vector boson scattering (Standard Model) anomalous gauge couplings (beyond Standard Model)

Effect of a Massive (top quark) Loop in $\mathbf{gg} \to \mathbf{ZZ}$

F. Caola, M. Dowling, K. Melnikov, R. Röntsch, L. Tancredi [1605.04610]

Interference with decaying Higgs boson

F. Caola, M. Dowling, K. Melnikov, R. Röntsch, L. Tancredi [1605.04610]

$$\sigma_{\rm gg \longrightarrow ZZ} \propto \left| A_{\rm gg \xrightarrow{H} ZZ} + A_{\rm gg \xrightarrow{h} ZZ} \right|^2$$
$$= \left| A_{\rm gg \xrightarrow{H} ZZ} \right|^2 + \left| A_{\rm gg \xrightarrow{h} ZZ} \right|^2 + 2 \operatorname{Re} \left[A_{\rm gg \xrightarrow{H} ZZ} A_{\rm gg \xrightarrow{h} ZZ}^* \right]$$

Interference with decaying Higgs boson

F. Caola, M. Dowling, K. Melnikov, R. Röntsch, L. Tancredi [1605.04610]

Interference with decaying Higgs boson

F. Caola, M. Dowling, K. Melnikov, R. Röntsch, L. Tancredi [1605.04610]

"signal"

"background"

▶ gg
$$\rightarrow$$
 ZZ \rightarrow e⁺e⁻ $\mu^+\mu^-$

▶
$$150 GeV < m_{4\ell} < 340 GeV$$

(below top threshold)

▶ $60 GeV < m_{\ell\ell} < 120 GeV$

(Z peak)

$$\begin{split} & \sigma^{\rm isgnal}_{\rm LO} = 0.043^{+0.012}_{-0.009} \ {\rm fb}, \qquad \sigma^{\rm signal}_{\rm NLO} = 0.074^{+0.008}_{-0.008} \ {\rm fb} \\ & \sigma^{\rm bbgd}_{\rm LO} = 2.90^{+0.77}_{-0.58} \ {\rm fb}, \qquad \sigma^{\rm bbgd}_{\rm NLO} = 4.49^{+0.34}_{-0.38} \ {\rm fb} \\ & \sigma^{\rm inff}_{\rm LO} = -0.154^{+0.031}_{-0.04} \ {\rm fb}, \qquad \sigma^{\rm inff}_{\rm NLO} = -0.287^{+0.031}_{-0.037} \ {\rm fb} \\ & \sigma^{\rm full}_{\rm LO} = 2.79^{+0.74}_{-0.56} \ {\rm fb}, \qquad \sigma^{\rm inll}_{\rm NLO} = 4.27^{+0.32}_{-0.35} \ {\rm fb} \end{split}$$

Standard Model Prediction for pp \rightarrow ZZ

G. Heinrich, SJ, S. P. Jones, M. Kerner, J. Pires [1710.06294]

► *N*-jettiness subtraction scheme

R. Boughezal et al. [1504.02131], J. Gaunt et al. [1505.04794]

2 loop virtual amplitude from qqvvamp (massless QCD) T. Gehrmann et al. [1503.04812]

► cross check with calculations in *q*_T-subtraction scheme *F.* Cascioli et al. [1405.2219]. *M.* Grazzini et al. [1507.06257]

▶ partial N³LO results in the (anti-)quark-gluon channel M. Grazzini et al. [1811.09593]

Outlook: top mass effects in pp \rightarrow ZZ

Standard Model Prediction for pp \rightarrow ZZ

G. Heinrich, SJ, S. P. Jones, M. Kerner, J. Pires [1710.06294]

 $pp \rightarrow ZZ + X \sqrt{s} = 13 \text{ TeV}$

Standard Model Prediction for pp \rightarrow ZZ

- ► last missing piece for full NNLO(QCD) cross-section: massive top-quark loops in $q\bar{q} \xrightarrow{t} ZZ$
- ▶ largest scale uncertainty from: $gg \rightarrow ZZ$ (loop-induced)
 - $\blacktriangleright\,$ also include 2-loop of gg \rightarrow ZZ although formally N^3LO
- ▶ calculation similar to gg \xrightarrow{t} HH
 - S. Borowka et al. [1604.06447]
- ▶ automated calculation with GoSAM-Xloop
 - ▶ Larin-Scheme for γ_5 treatment
 - S. A. Larin [hep-ph/9302240]

GoSam-Xloop

Evaluation of the Master Integrals

- many massive two-loop integrals analytically unknown
- multiple numerical approaches
- automated tools for numerical evaluation available

Evaluation of the Master Integrals The Sector Decomposition Approach

$$\mathcal{I} \equiv \int d^D k_1 \cdot \ldots \cdot d^D k_L \frac{1}{P_1^{\nu_1} \cdot \ldots \cdot P_N^{\nu_N}}$$

D: dimensionality (typically $4 - 2\epsilon$) P_i : propagators (< momentum >² [- < mass >²] + i\delta)

Evaluation of the Master Integrals The Sector Decomposition Approach

$$\mathcal{I} \equiv \int d^D k_1 \cdot \ldots \cdot d^D k_L \frac{1}{P_1^{\nu_1} \cdot \ldots \cdot P_N^{\nu_N}}$$
$$\propto \int_0^1 \prod_{j=1}^N dx_j x_j^{\nu_j - 1} \delta\left(1 - \sum_{n=1}^N x_n\right) \frac{\mathcal{U}^{N_\nu - (L+1)D/2}}{\mathcal{F}^{N_\nu - LD/2}}$$

 $\begin{array}{l} D: \text{ dimensionality (typically } 4-2\epsilon) \\ P_i: \text{ propagators } (<\textit{momentum} >^2 \left[-<\textit{mass} >^2\right]+i\delta) \\ N_{\nu} = \sum\limits_{i=1}^{N} \nu_i \\ \mathcal{U} = \mathcal{U}(\vec{x}): \ 1^{\text{st}} \text{ Symanzik polynomial} \\ \mathcal{F} = \mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2): \ 2^{\text{nd}} \text{ Symanzik polynomial} \end{array}$

Evaluation of the Master Integrals The Sector Decomposition Approach

▶ loop integral, schematically:

$$\mathcal{I} \equiv \int_0^1 \mathrm{d} x_1 \dots \int_0^1 \mathrm{d} x_N \prod_{i=1}^m f_i \left(\vec{x}\right)^{b_i + c_i \epsilon}$$

where the f_i are polynomials in \vec{x}

expand integrand in the dimensional regulator

$$\mathcal{I} = \int_0^1 \mathrm{d} x_1 \dots \int_0^1 \mathrm{d} x_N \sum_{k=-2L}^\infty \mathcal{I}_k(\vec{x}) \epsilon^k$$

Public Implementations of Sector Decomposition

sector_decomposition

- C. Bogner, S. Weinzierl [0709.4092]
 - ► supplemented by: CSectors
 - J. Gluza, K. Kajda, T. Riemann, V. Yundin [1010.1667]

► FIESTA 4

A.V. Smirnov [1511.03614]

► pySecDec

- S. Borowka, G. Heinrich, SJ, S.P. Jones, M. Kerner, J. Schlenk, T.Zirke [1703.09692]
- S. Borowka, G. Heinrich, SJ, S.P. Jones, M. Kerner, J. Schlenk [1811.11720]

Improved Numerical Integration in pySecDec-1.4

S. Borowka, G. Heinrich, SJ, S.P. Jones, M. Kerner, J. Schlenk [1811.11720]

	QMC on GPUs		VEGAS	
	rel. acc.	time (s)	rel. acc.	time (s)
banana 3mass 3L	$3.8\cdot10^{-11}$	15	$1.5 \cdot 10^{-3}$	39
HZ nonplanar 2L	$1.3 \cdot 10^{-3}$	24	$5.2 \cdot 10^{-3}$	27
pentabox fin 2L	$1.9\cdot10^{-4}$	42	$2.6 \cdot 10^{-3}$	139
elliptic 2L	$2.0 \cdot 10^{-6}$	9	$3.6\cdot10^{-4}$	104
formfactor 4L	$4.2 \cdot 10^{-7}$	258	$2.7 \cdot 10^{-4}$	986
Nbox split b 2L	$2.5 \cdot 10^{-3}$	60	$1.6\cdot10^{-1}$	177
bubble 6L	$8.5 \cdot 10^{-7}$	279	$5.7 \cdot 10^{-4}$	199

- b download: https://github.com/mppmu/secdec/releases/
- b documentation: https://secdec.readthedocs.io/

Conclusion

 electroweak gauge boson production: important test of the Standard Model

- \blacktriangleright mass corrections in gg \rightarrow ZZ
 - important for highly energetic Z bosons in interference with intermediate Higgs boson production
 - ▶ automated computation with numerical methods feasible

BACKUP

Flowchart pySecDec

Loop Integral - Momentum Representation

$$\mathcal{I} = \int d^D k_1 \cdot \ldots \cdot d^D k_L \frac{1}{P_1^{\nu_1} \cdot \ldots \cdot P_N^{\nu_N}}$$

- D: dimensionality
- L: number of loops
- N: number of propagators
- P_i : propagators (< momentum >² [- < mass >²] + i\delta)
- ν_i : propagator powers

Loop Integral - Feynman Representation

$$\mathcal{I} = (-1)^{N_{\nu}} \frac{\Gamma(N_{\nu} - LD/2)}{\prod_{j=1}^{N} \Gamma(\nu_{j})} \int_{0}^{1} \prod_{j=1}^{N} dx_{j} x_{j}^{\nu_{i}-1} \delta\left(1 - \sum_{n=1}^{N} x_{n}\right) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}}{\mathcal{F}^{N_{\nu} - LD/2}}$$

- D: dimensionality
- L: number of loops
- N: number of propagators
- ν_i : propagator powers

$$N_{\nu} = \sum_{i=1}^{N} \nu_i$$

 $\mathcal{U} = \mathcal{U}(\vec{x})$: 1st Symanzik polynomial $\mathcal{F} = \mathcal{F}(\vec{x}, p_i \cdot p_j, m_i^2)$: 2nd Symanzik polynomial

Sector Decomposition

or: Resolution of Overlapping Singularities

Subtraction of Poles

$$\int_{0}^{1} dt t^{-1+b\epsilon} g(t)$$

$$= \int_{0}^{1} dt t^{-1+b\epsilon} (g(0) + g(t) - g(0))$$

$$= \underbrace{\int_{0}^{1} dt t^{-1+b\epsilon} g(0)}_{=\frac{1}{b\epsilon}g(0)} + \underbrace{\int_{0}^{1} dt t^{-1+b\epsilon} (g(t) - g(0))}_{\text{finite for } \epsilon \to 0, \text{ expand integrand in } \epsilon}$$

Quasi Monte Carlo (QMC)

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512], S. Borowka et al. [1811.11720]

with n: number of integrand evaluations

Quasi Monte Carlo (QMC)

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512], S. Borowka et al. [1811.11720]

$$I_{s}[f] \approx \bar{Q}_{s,n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_{s,n}^{(k)}[f], \quad I_{s}[f] \equiv \int_{[0,1]^{s}} d^{s} x f(x), \quad Q_{s,n}^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{iz}{n} + \Delta_{k}\right\}\right)$$

with $\{\cdot\}$ the fractional part, z the generating vector, $\mathbf{\Delta}_k$ the random shift vector, and f the integrand

Quasi Monte Carlo (QMC)

D. Nuyens et al. (2006), J. Dick et al. (2013), Z. Li et al. [1508.02512], S. Borowka et al. [1811.11720]

pySecDec Timings

S. Borowka, G. Heinrich, SJ, S.P. Jones, M. Kerner, J. Schlenk, T.Zirke [1703.09692]

Table 5

Comparison of timings (algebraic, numerical) using pySecDec, SecDec 3 and FIESTA 4.1.

	pySecDec time(s)	SecDec 3 time (s)	FIESTA 4.1 time (s)
triangle2L	(40.5, 9.6)	(56.9, 28.5)	(211.4, 10.8)
triangle3L	(110.1,0.5)	(131.6,1.5)	(48.9, 2.5)
elliptic2L_euclidean	(8.2, 0.2)	(4.2, 0.1)	(4.9, 0.04)
elliptic2L_physical	(21.5, 1.8)	(26.9, 4.5)	(115.3, 4.4)
box2L_invprop	(345.7, 2.8)	(150.4, 6.3)	(21.5, 8.8)

Flowchart GoSAM

