String Theory meets Condensed Matter Physics

Martin Ammon

Max-Planck-Institute for Physics, Munich

Particle Physics School Colloquium May 7th, 2010

Image: A matrix and a matrix

Outline

Motivation

Can we use string theory to study experimental observations?

- $\mathcal{N} = 4$ SYM coupled to
 - $\mathcal{N}=2$ hypermultiplets
- at finite T and finite density

Resul

- Conductivity tensor
- Superconducting state
- emergent Fermi Surfaces

Can we apply string theory to real-world systems?

Quark-Gluon Plasma (QGP)

- observed at RHIC
- behaves as a liquid → Hydrodynamics
- strongly coupled
- inputs for hydrodynamic description
 - thermodynamics (equation of state)
 - transport coefficients (shear and bulk viscosity, charge diffusion constant, conductivities)

Question

Can we calculate transport coefficients (e.g. shear viscosity, conductivities) of the QGP?

- Perturbation theory not reliable,
- Lattice Simulations are difficult!

Can we apply string theory to real-world systems?

Answer

No! So modify the question ... Can we calculate the transport coefficients for gauge theories with a dual gravity description?

Can we apply string theory to real-world systems?

Answer

No! So modify the question ... Can we calculate the transport coefficients for gauge theories with a dual gravity description?

Famous prediction

for the shear viscosity of any strongly coupled, large *N* gauge theory with a gravity dual

$$\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$$

[Kovtun, Son, Starinets, '03]

Can we apply string theory to real-world systems?

Answer

No! So modify the question ... Can we calculate the transport coefficients for gauge theories with a dual gravity description?

Famous prediction

for the shear viscosity of any strongly coupled, large *N* gauge theory with a gravity dual

$$\frac{\eta}{s} = \frac{1}{4\pi} \approx 0.08$$

[Kovtun, Son, Starinets, '03]

Experimental result

$$rac{\eta}{s} pprox 0.1 - 0.25$$

[RHIC, '06]

M. Ammon (MPI for Physics)

Condensed Matter Systems

Unsolved Problems

- High-*T_c* superconductors
- Heavy fermion compounds
- Strange metals
- Non-Fermi liquids

< A

< ∃ ►

Condensed Matter Systems

Unsolved Problems

- High-*T_c* superconductors
- Heavy fermion compounds
- Strange metals
- Non-Fermi liquids

< 47 ▶

Condensed Matter Systems

Unsolved Problems

- High-*T_c* superconductors
- Heavy fermion compounds
- Strange metals
- Non-Fermi liquids

< A

(4) (3) (4) (4) (4)

Condensed Matter Systems

Unsolved Problems

- High-*T_c* superconductors
- Heavy fermion compounds
- Strange metals
- Non-Fermi liquids

< A

Condensed Matter Systems

Unsolved Problems

- High-*T_c* superconductors
- Heavy fermion compounds
- Strange metals
- Non-Fermi liquids

Quantum Phase Transition

- Quantum Phase Transition = Phase Transition at T = 0.
- Consider condensed matter systems near quantum critical points.

- temperature is the only relevant scale.
- Quantum critical theory is scale invariant and often strongly coupled ⇒ perfect for AdS/CFT!

Image: Image:

- temperature is the only relevant scale.
- Quantum critical theory is scale invariant and often strongly coupled ⇒ perfect for AdS/CFT!

Effective Theories

in QCR-Region:

e.g. O(N) models (Wilson-Fisher fixed point),...

Difficult to find!

- temperature is the only relevant scale.
- Quantum critical theory is scale invariant and often strongly coupled ⇒ perfect for AdS/CFT!

Effective Theories

Scale invariance

in QCR-Region:

e.g. O(N) models (Wilson-Fisher fixed point),...

Difficult to find!

scale invariance

$$t \to \lambda^{z} t, \qquad \vec{x} \to \lambda \vec{x} ,$$

< 17 ▶

where z > 0 is the dynamical exponent. Relativistic case: z = 1.

- temperature is the only relevant scale.
- Quantum critical theory is scale invariant and often strongly coupled ⇒ perfect for AdS/CFT!

Effective Theories

Scale invariance scale invariance

in QCR-Region:

e.g. O(N) models (Wilson-Fisher fixed point),...

Difficult to find!

$$t \to \lambda^z t$$
, $\vec{x} \to \lambda \vec{x}$

where z > 0 is the dynamical exponent. Relativistic case: z = 1.

Use AdS/CFT to describe quantum critical theories!

Gauge/Gravity Duality

AdS/CFT correspondence (as a toy model)

A strongly coupled d-dimensional conformal field theory is dual to a gravity theory in asymptotically AdS_{d+1} spacetime

< < >> < </p>

Gauge/Gravity Duality

AdS/CFT correspondence (as a toy model)

A strongly coupled d-dimensional conformal field theory is dual to

a gravity theory in asymptotically AdS_{d+1} spacetime

An explicit string theory realization

 $4D \mathcal{N} = 4 SU(N_c)$ super Yang-Mills at large N_c and strong coupling is dual to

type IIB supergravity in asymptotically $AdS_5 \times S^5$ spacetime

May be derived from string theory, in particular from N_c D3-branes

イロト イ理ト イヨト イヨ

Goal

- Calculate conductivities
- Build superconductors
- Model fermi surfaces

Two different approaches:

Goal

- Calculate conductivities
- Build superconductors
- Model fermi surfaces

Two different approaches:

Goal

- Calculate conductivities
- Build superconductors
- Model fermi surfaces

Bottom-Up

- Use toy model: gravity
- Add Fermions, scalars, gauge fields by hand
- Charges & masses not fixed ⇒ can scan different models!
- Field theory dual not known

Goal

- Calculate conductivities
- Build superconductors
- Model fermi surfaces

Two different approaches:

Bottom-Up	Top-Down
Use toy model: gravity	Use string theory embedding
 Add Fermions, scalars, gauge fields by hand Charges & masses not fixed 	 Add D-branes to model fermions, scalars, gauge fields
\Rightarrow can scan different models!	Charges & masses fixed
Field theory dual not known	Dual field theory is known

AdS/CFT Duality

Results of the Top-Down approach

- Calculation of conductivities
 - DC conductivities: the method
 - DC conductivities for arbitrary electric and magnetic fields

```
[M.A., H. Ngo, A. O'Bannon, '09]
```

[A. Karch, A. O'Bannon, '07]

• DC & AC conductivities for QCP with $z \neq 1$ (Lifshitz symmetry)

[S. Hartnoll, J. Polchinski, E. Silverstein, D. Tong, '09]

DC & AC conductivities for QCP with z = 2 (Schrödinger symmetry)

[M.A., C. Hoyos, A. O'Bannon, J. Wu, '10]

Holographic p-wave Superconductors

[M.A., J. Erdmenger, M. Kaminski, P. Kerner, '08, '09 + many other groups afterwards]

- Holographic fermi surfaces [M.A., J. Erdmenger, M. Kaminski, A. O'Bannon, '10]
 Effective action, Dual Field Theory operators, Fermi Surfaces in p-wave superconductors
- Adding charge carriers to 2 + 1-dimensional field theories

[M.A., J. Erdmenger, R. Meyer, A. O'Bannon, T. Wrase , '09 + many other groups]

イロト イポト イヨト イヨト

Holographic Setup

 Two types of charge carriers (mass M) with opposite chemical potential μ Holographic realization:

two coincident D5-branes in $AdS - BH_5 \times S^5$ with non-vanishing gauge field $A_t = A_t^3 \sigma^3 \in SU(2)$. \Rightarrow breaks SU(2) down to $U(1)_3$.

- Solve the EOMs and calculate the on-shell action S_{on-shell}.
- Determine the partition function $Z = \exp(-S_{onshell})$.

.

Holographic Setup

 Two types of charge carriers (mass M) with opposite chemical potential μ Holographic realization:

two coincident D5-branes in $AdS - BH_5 \times S^5$ with non-vanishing gauge field $A_t = A_t^3 \sigma^3 \in SU(2)$. \Rightarrow breaks SU(2) down to $U(1)_3$.

- Solve the EOMs and calculate the on-shell action S_{on-shell}.
- Determine the partition function $Z = \exp(-S_{onshell})$.

M. Ammon (MPI for Physics)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

05/07/2010

10/14

Holographic Setup

 Two types of charge carriers (mass *M*) with opposite chemical potential μ Holographic realization:

two coincident D5-branes in $AdS - BH_5 \times S^5$ with non-vanishing gauge field $A_t = A_t^3 \sigma^3 \in SU(2)$. \Rightarrow breaks SU(2) down to $U(1)_3$.

- Solve the EOMs and calculate the on-shell action Son-shell.
- Determine the partition function $Z = \exp(-S_{onshell})$.

A holographic superconductor

How to cure the instable phase?

Gauge field A_z^1 has to be non-zero,

Set the normalizable mode to zero.

$$\Rightarrow \mathcal{J}_z^1$$
 is not sourced but $\langle \mathcal{J}_z^1 \rangle \neq 0$

Spontaneous breaking of U(1)

 \Rightarrow Superconductor

A holographic superconductor

A holographic superconductor

Properties of Phase transition

- Order parameter $\mathcal{J}_{\mathbf{x}}^{1} \propto \bar{\psi}_{\mathbf{u}}\sigma_{3}\psi_{\mathbf{d}} + \bar{\psi}_{\mathbf{d}}\sigma_{3}\psi_{\mathbf{u}} + \dots$
- second order phase transition with critical exponent of 1/2
- Gap in the AC conductivity, Infinite DC conductivity ⇒ zero resistance

M. Ammon (MPI for Physics)

Fermi Surfaces

ARPES measurements

Results agree qualitatively:

The Fermi surface collapses to points!

M. Ammon (MPI for Physics)

AdS/CMT

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conclusion

Conclusion

Results & Outlook

- We can study AC & DC conductivities, (p-wave) superconductors and Fermi surfaces in models with an string theory embedding.
- Results qualitatively similar to ARPES, measurements of the conductivity.
- Dual field theory is known explicitly. Compare to a perturbative analysis!
- New insights into High-T_c superconductors and Non-Fermi liquids possible?
- No Universal behavior found so far!

Conclusion

Conclusion

Results & Outlook

- We can study AC & DC conductivities, (p-wave) superconductors and Fermi surfaces in models with an string theory embedding.
- Results qualitatively similar to ARPES, measurements of the conductivity.
- Dual field theory is known explicitly. Compare to a perturbative analysis!
- New insights into High-T_c superconductors and Non-Fermi liquids possible?
- No Universal behavior found so far!

Acknowledgements

I am very grateful to my collaborateurs J. Erdmenger, V. Grass, S. Höhne, C. Hoyos, M. Kaminski, P. Kerner, D. Lüst, R. Meyer, H. Ngo, A. O'Bannon, T. Wrase and J. Wu.

Conclusion

Conclusion

Results & Outlook

- We can study AC & DC conductivities, (p-wave) superconductors and Fermi surfaces in models with an string theory embedding.
- Results qualitatively similar to ARPES, measurements of the conductivity.
- Dual field theory is known explicitly. Compare to a perturbative analysis!
- New insights into High-T_c superconductors and Non-Fermi liquids possible?
- No Universal behavior found so far!

Acknowledgements

I am very grateful to my collaborateurs J. Erdmenger, V. Grass, S. Höhne, C. Hoyos, M. Kaminski, P. Kerner, D. Lüst, R. Meyer, H. Ngo, A. O'Bannon, T. Wrase and J. Wu.

AC Conductivity

conductivity $\operatorname{Re} \sigma(\mathfrak{w}) \sim \mathcal{R}/\omega$

イロト イ理ト イヨト イヨ

A String Realization of a Holographic superconductor

Can we realize a superconductor?

[Gubser, Hartnoll, Herzog, Horowitz, Denef, ... '08, '09]

(日)

Superfluid versus Superconductor

- Superfluid: spontaneous breaking of a global u(1)
- Superconductor: spontaneous breaking of a local u(1)

Our model as a superconductor

- If we gauge the u(1)₃ symmetry, then we can identify u(1)₃ flavor symmetry ↔ u(1)_{em.} ⟨J_z¹⟩ order parameter ↔ superconducting condensate
- We have many features of a superconductor
 - infinite DC conductivity, gap in the AC conductivity
 - second order phase transition, critical exponent of 1/2 (mean field)
 - a remnant of the Meissner–Ochsenfeld effect

A String Realization

String Picture

Explanation

- strings spanned from the horizon to the D5-branes (horizon strings) induce a charge near the horizon
- System unstable above a critical value of the charge density
- Horizon strings recombine to D5–D5 strings
- D5–D5 strings can propagate into the bulk (balancing the flavorelectric and gravitational forces). Horizon strings cannot
 propagate into the bulk.
- D5–D5 strings distribute the isospin charge in the bulk and correspond to superconducting condensate.