The Flavor Puzzle in the Randall-Sundrum model

Stefania Gori

MPI Munich & TU Munich

München

June 11th 2010

Outline

1. Motivations for WED:

- Addressing Gauge Hierarchy Problem
- Addressing the SM Flavor Problem
- ◆ Viable Model for the Electro-Weak Symmetry Breaking
- **...**

2. Randall-Sundrum Scenario:

- ◆ The Model analyzed
- ◆ The NP Flavor Problem

Phenomenology

- K and B meson mixing
- Rare K and B decays

3. Conclusions

Based on collaboration with:

Monika Blanke, Andrzej Buras, Bjorn Duling, Katrin Gemmler, Andreas Weiler

Gauge Hierarchy Problem

The Problem: ...once that we extend the Standard Model

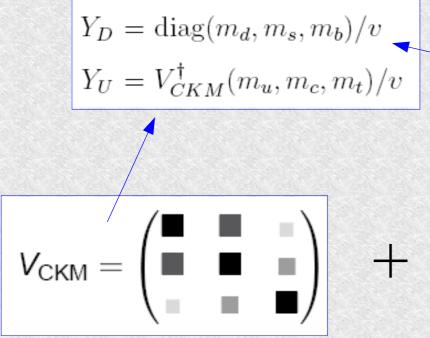
- ${\color{red} \bullet}$ Huge hierarchy between the fundamental gravity scale ${\color{Myellow}M_{pl}}$ & the EW scale ${\color{Myellow}\Lambda_{EWSB}}$
- Tremendous fine-tuning required to keep $\Lambda_{\text{EWSB}} \sim 1 \text{ TeV}$
- $\ \, \text{Even if} \ \Lambda_{\text{EWSB}} \ / \ M_{\text{pl}} \sim 10^{\text{--}16} \ \, \text{is imposed at tree-level, loop corrections push} \ \Lambda_{\text{EWSB}} \sim M_{\text{pl}} \$

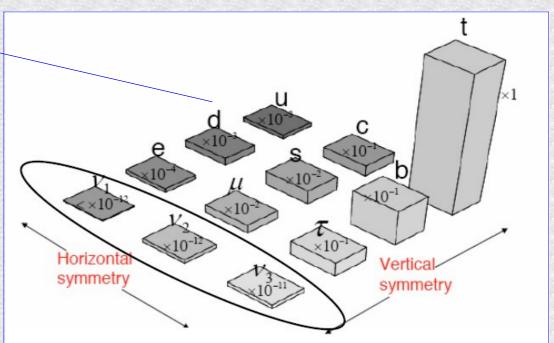
Most popular solutions

- Supersymmetry
- Technicolour
- Large Extra Dimensions
- **a** ...

New Physics at the TeV scale

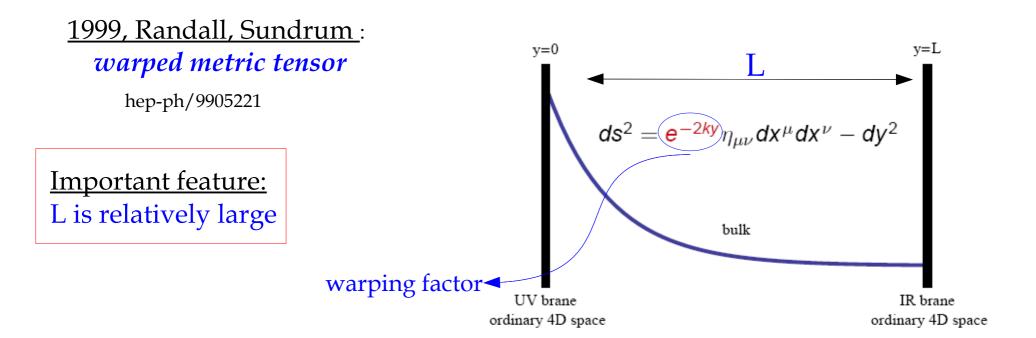
The Hierarchy problem is not about big/small numbers




 $= 10^{12}$

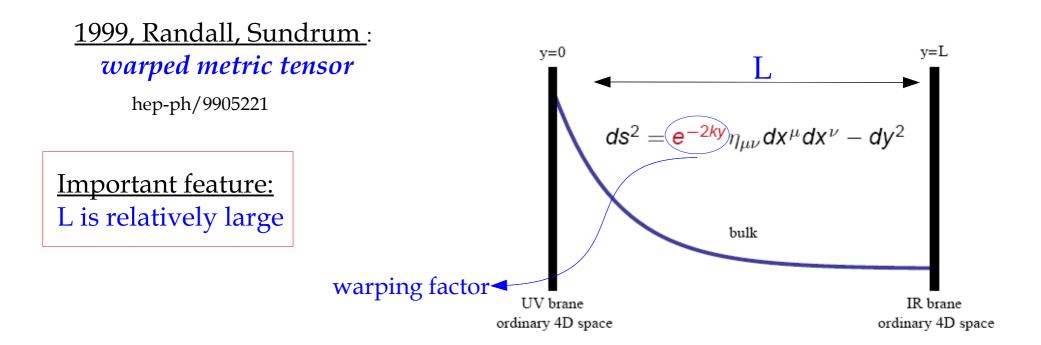
It is a problem of stability of a small number!

The SM Flavor Puzzle



Compare to $g_s \sim 1, \ g \sim 0.6, \ g' \sim 0.3, \ \lambda_{Higgs} \sim 1$

SM Yukawa couplings have to exhibit an extremely hierarchical structure, why?


The Randall-Sundrum Set Up

5 dimensions

The Randall-Sundrum Set Up

5 dimensions

What about the impact of WED in particle physics?

The Higgs in the Fifth Dimension

$$\sqrt{-g} = e^{-k|y|}; g^{\mu\nu} = e^{2k|y|}\eta^{\mu\nu}$$

$$S = \int d^4x dy \sqrt{-g} \left(g^{\mu\nu}\partial_\mu H^\dagger\partial_\nu H - \lambda(H^2-v_0^2)^2\right) \delta(y-L)$$

$$S = \int d^4x \left(\partial^\mu h^\dagger\partial_\mu h - \lambda(h^2-v_0^2e^{-2kL})^2\right) \equiv \int d^4x \left(\partial^\mu h^\dagger\partial_\mu h - \lambda(h^2-v_{0IR}^2)\right)$$
 Canonical
$$v_{0IR}^2 = v_0^2e^{-2kL}$$
 normalization

With $v_0 \sim \mathcal{O}(M_{pl})$ only a moderate hierarchy is required to obtain $v_{0IR} \sim \mathcal{O}(1 \, TeV)$

$$kL \approx 30$$

Fundamental gravity scale still given by M_{pl}

$$f = ke^{-kL}$$

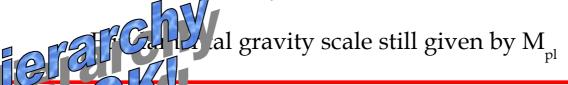
 $f = ke^{-kL}$ only free parameter coming from geometry

 $H \rightarrow e^{kL}h$

The Higgs in the Fifth Dimension

$$\sqrt{-g} = e^{-k|y|}; g^{\mu\nu} = e^{2k|y|}\eta^{\mu\nu}$$

$$S=\int d^4x dy \sqrt{-g} \left(g^{\mu
u}\partial_\mu H^\dagger\partial_
u H-\lambda (H^2-v_0^2)^2
ight)\delta(y-L)$$


$$S = \int d^4x \left(\partial^\mu h^\dagger \partial_\mu h - \lambda (h^2 - v_0^2 e^{-2kL})^2\right) \equiv \int d^4x \left(\partial^\mu h^\dagger \partial_\mu h - \lambda (h^2 - v_{0IR}^2)\right)$$
 Canonical

normalization

$$H \to e^{kL} h$$

With $v_0 \sim \mathcal{O}(M_{pl})$ only a moderate hierarchy is required to obtain $v_{0IR} \sim \mathcal{O}(1 \, TeV)$

 $kL \approx 30$

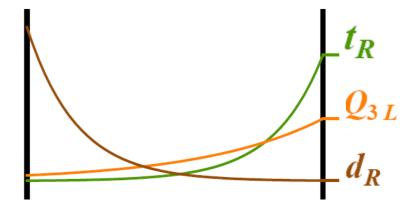
$$f = ke^{-kL}$$

only free parameter

coming from geometry

Origin of Mass Hierachies

- ◆ Each SM fermion multiplet belongs to a different 5D fermion field
- ◆ The Localization in the bulk is given by

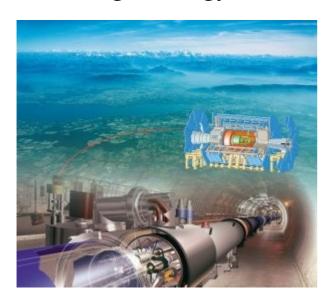

$$f^{(0)}(y,c) = \sqrt{\frac{(1-2c)kL}{e^{(1-2c)kL}-1}} e^{(\frac{1}{2}-c)ky}$$

Strong dependence on the bulk mass proper of the 5D fermion field

◆ 4D Yukawas in terms of shape functions:

$$Y_{ij} \propto \lambda_{ij} f_L^{(0)}(L,c^i) f_R^{(0)}(L,c^j)$$
5D Yukawas
(assumed to be **anarchical** and O(1))

e anarchical and O(1)


Arkani-Hamed, Schmaltz hep-ph/9903417

◆ Result: slightly different bulk masses of O(1) lead to large hierarchies in Y_{ii}

Hierarchy of quark masses and mixings explained by a purely geometrical approach

Two Ways to Test the RS Model

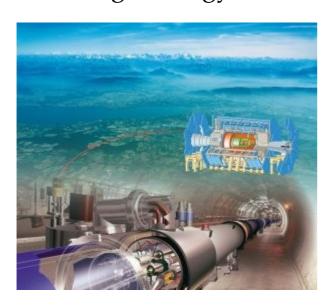
The high-energy frontier

Collider Physics:

- Direct production of new particles
- Test of the NP scale f

Requirement for LHC, Tevatron: $f \sim \mathcal{O}(\text{TeV})$

The high-precision frontier



Flavor Physics:

- New particles probed through quantum corrections
- Test of the flavor structure of the NP model

Two Ways to Test the RS Model

The high-energy frontier

Collider Physics:

- Direct production of new particles
- Test of the NP scale f

Requirement for LHC, Tevatron: $f \sim \mathcal{O}(\text{TeV})$

The high-precision frontier

We follow this approach

BUT

we fix a NP scale f = 1 TeV

Flavor Physics:

- New particles probed through quantum corrections
- Test of the flavor structure of the NP model

The NP Flavor Puzzle

- ◆ The effects of New Physics at high energy scale Λ_{NP} can be represented by **higher dimensional operators** in the low energy effective theory
- ◆ Example for neutral meson mixing:

$$rac{\overline{a_{ds}}}{\Lambda_{NP}^2}(ar{d}_L\gamma_\mu s_L)^2 + rac{\overline{a_{cu}}}{\Lambda_{NP}^2}(ar{c}_L\gamma_\mu u_L)^2 + rac{\overline{a_{db}}}{\Lambda_{NP}^2}(ar{d}_L\gamma_\mu b_L)^2 + rac{\overline{a_{sb}}}{\Lambda_{NP}^2}(ar{s}_L\gamma_\mu b_L)^2$$

$$rac{\Delta M_d}{M_d} \sim rac{f_B^2}{3} rac{|a_{db}|}{\Lambda_{NP}^2}$$

• Assuming coefficients order one:

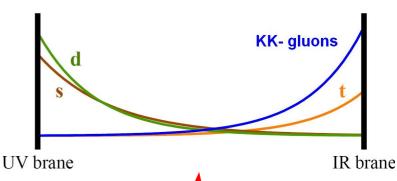
Mixing	$\Lambda_{NP}^{CPC} \geq$	$\Lambda_{NP}^{CPV} \geq$
$K - \bar{K}$	1000TeV	20000TeV
$D-ar{D}$	1000TeV	3000TeV
$B_d - ar{B}_d$	400TeV	800TeV
$B_s - \bar{B}_s$	70TeV	70TeV

• Fixing the cutoff to 1 TeV:

		$Im(a_{ij}) \leq$	
$K - \bar{K}$	8×10^{-7}	6×10^{-9} 1×10^{-7} 1×10^{-6}	
$D-ar{D}$	5×10^{-7}	1×10^{-7}	Nir et al.
$B_d - ar{B}_d$	5×10^{-6}	1×10^{-6}	
$B_s - ar{B}_s$	2×10^{-4}	2×10^{-4}	

High energy scale much bigger than the EW scale

Little Hierarchy Problem


The RS scenario

The Flavor Structure of New Physics should be highly non generic, to predict small Flavor Changing Neutral Currents (FCNCs)

Non Universality & FCNC at Tree Level (1)

KK tower of heavy gluons (gauge bosons)

...that are all localized towards the IR brane

Their couplings with SM fermions are non-universal

...because couplings to SM fermions depend on their localization

$$\Delta_{L,R} \propto \int_{0}^{L} dy \, e^{ky} \left[f_{L,R}^{(0)}(y, c_{\Psi}^{i}) \right]^{2} g(y)$$

4D gauge couplings are determined by overlap integrals

Rotation to mass eigenstates:

non universalities

off-diagonal terms

FCNC at Tree Level mediated by the exchange of KK-gluons (KK-gauge bosons)

$$\Delta_{L,R}^{mass} \sim U_{L,R}^{\dagger} \left(egin{array}{c} \clubsuit & & \\ & \heartsuit & \\ & \spadesuit \end{array} \right) U_{L,R}$$

Non universalities

The NP flavor problem seems to be particularly grave!!

RS-GIM Mechanism

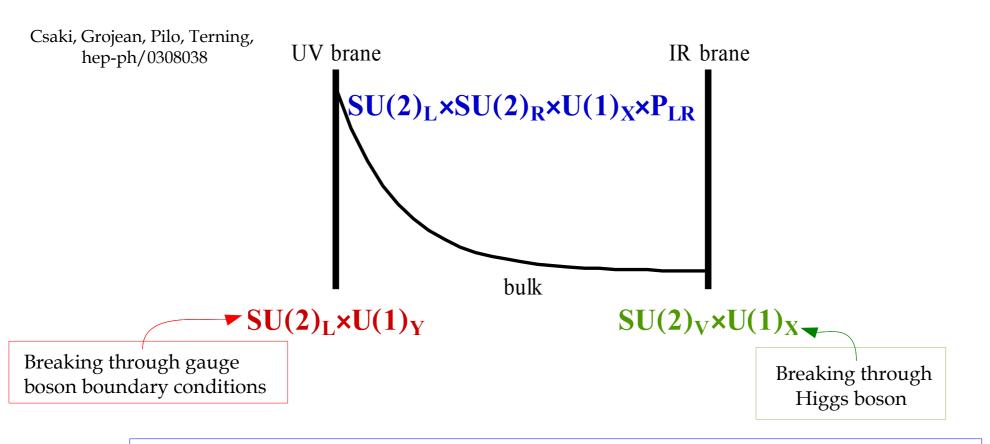
How to protect the flavor changing observables from too large corrections?

◆ In the SM: unitarity of CKM matrix ⊕ equal masses for quarks

GIM mechanism (broken by the large top mass)

Agashe, Perez, Soni, hep-ph/0408134

◆ In RS frameworks: couplings of EW gauge bosons and SM fermions:


$$\Delta_{L,R} \propto \int_0^L dy \, e^{ky} \left[f_{L,R}^{(0)}(y,c_\Psi^i) \right]^2 g(y) \qquad \qquad \Delta_{L,R}^{mass} \sim U_{L,R}^\dagger \left(\begin{array}{c} \clubsuit \\ \circlearrowleft \\ \bullet \end{array} \right) U_{L,R}$$
Flavor eigenstates

Mass eigenstates

- If $\clubsuit = \heartsuit = \spadesuit$ No FCNCs at tree level
- Since $m_u \sim m_c$ and $m_d \sim m_s$ \longrightarrow $\clubsuit \sim \heartsuit$ \longrightarrow Approximate RS-GIM mechanism
- $m_t \gg m_u, m_c$ and $m_b \gg m_d, m_s$ → ♣, $\heartsuit \neq \spadesuit$ Breaking of RS-GIM mechanism if third generation involved

Protection of the observables involving the first two generations

The RS model with Custodial Protection

With the enlarged gauge group in the bulk:

- Protection of the electroweak T parameter from too large NP corrections
- ullet Protection of the coupling $Zb_{_L}b_{_L}$ \iff $b_{_L}$ is eigenvalue of $P_{_{LR}}$

Protection Mechanism

Generalization of Agashe et al., hep-ph/0605341

Theorem: In theories with $SU(2)_L \times SU(2)_R \times P_{LR}$ gauge symmetry if a fermion F has $T_L = T_R$, $T_L^3 = T_R^3$ or $T_L^3 = T_R^3 = 0$ then

its coupling $ZF\bar{F}$ is **SM like**

• In RS model: relation not spoiled by the mixing with KK-fermions

Buras, Duling, SG, 0905.2318

• Consequence for SM fermions: all the $Zd_L^i \bar{d}_L^j$ and $Zu_R^i \bar{u}_R^j$ couplings are mainly SM like

Blanke, Buras, Duling, Gemmler, SG 0812.3803 Expected small contributions of NP due to the breaking of the P_{LR} symmetry

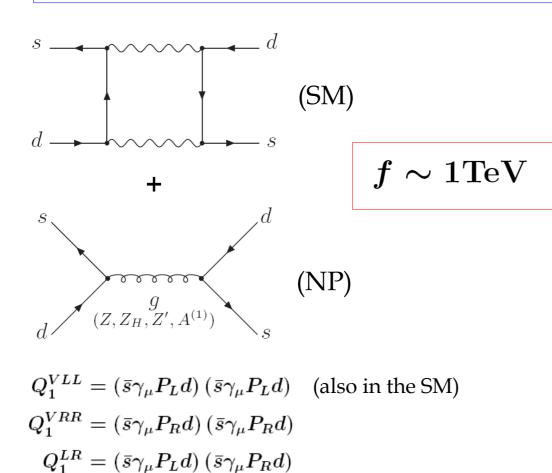
Final Result: in spite of the FCNC at the tree level, flavor transition observables can be under control in the RS model with custodial protection

Final Result: in spite of the FCNC at the tree level, flavor transition observables can be under control in the RS model with custodial protection

Taking again the effective Hamiltonian of before...

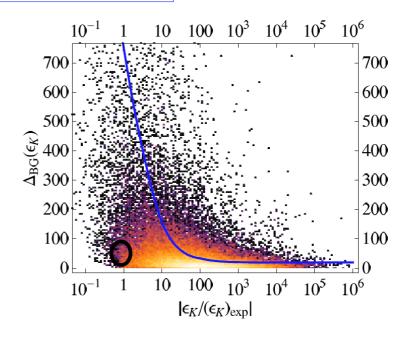
$$\frac{a_{ds}}{\Lambda_{NP}^2}(\bar{d}_L\gamma_{\mu}s_L)^2 + \frac{a_{cu}}{\Lambda_{NP}^2}(\bar{c}_L\gamma_{\mu}u_L)^2 + \frac{a_{db}}{\Lambda_{NP}^2}(\bar{d}_L\gamma_{\mu}b_L)^2 + \frac{a_{sb}}{\Lambda_{NP}^2}(\bar{s}_L\gamma_{\mu}b_L)^2$$

The theory predicts naturally small coefficients



Also a relatively low scale $fpprox \Lambda_{
m NP}\sim \mathcal{O}({
m TeV})$ can be acceptable

Still a Difficult Observable


 $\mathsf{E}_{_{\!K}}$: CP violating observable of the $K-\bar{K}$ system

Blanke, Buras, Duling, S.G., Weiler, 0809.1073

 $Q_2^{LR} = (\bar{s}P_L d)(\bar{s}P_R d)$ (only for gluons)

strongly enhanced

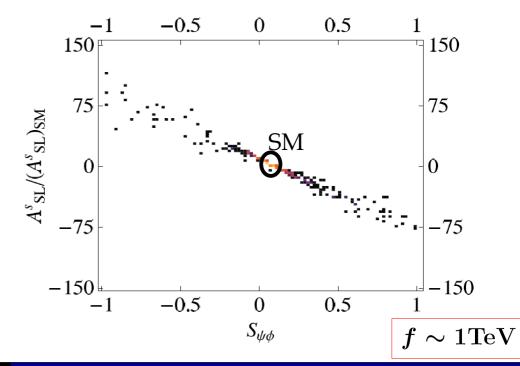
Definition of fine-tuning

$$\Delta_{BG}(Obs.) = max_i rac{d \log(Obs.)}{d \log(x_i)}$$

- Generically $\epsilon_{_{\!K}} \sim 10^2 \, \epsilon_{_{\!K}}^{\ exp}$
- Parameter sets with moderate fine tuning and $\mathcal{E}_{_{\mathrm{K}}} \sim \mathcal{E}_{_{\mathrm{K}}}^{\mathrm{exp}}$ exist

Golden Channel for Flavor Physics

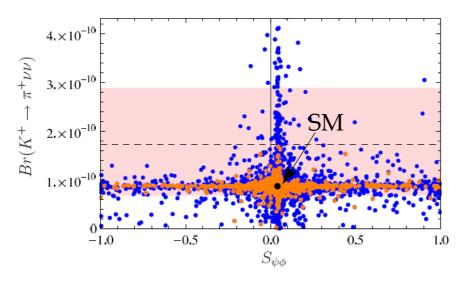
 $\mathsf{S}_{\psi_{\pmb{\omega}}}$: CP violating observable of the $B_s - ar{B}_s$ system


- ullet It is very suppressed in the SM: $(S_{\psi\phi})_{
 m SM} \sim 0.04$
- ullet Large central value given by last experiments of CDF and D0: $(S_{\psi\phi})_{
 m exp} \sim 0.5$

~ 3\sigma of deviation

Blanke, Buras, Duling, S.G., Weiler, 0809.1073

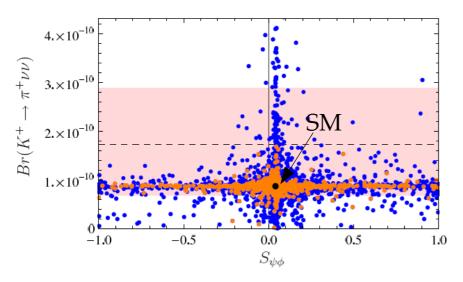
Possible large NP contributions, being in agreement with the well measured ΔF =2 transitions


waiting for the new results of LHCb...

Predictions of the Model for Flavor Transitions

Blanke, Buras, Duling, Gemmler, SG, 0812.3803

Rare K decays

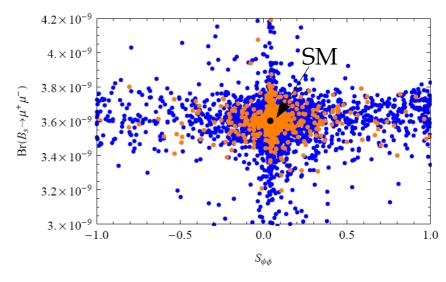

Large NP contributions

BUT

Difficult to obtain simultaneously large deviations from the SM for both observables

Predictions of the Model for Flavor Transitions

Blanke, Buras, Duling, Gemmler, SG, 0812.3803


Rare K decays

Large NP contributions

BUT

Difficult to obtain simultaneously large deviations from the SM for both observables

Study of the **footprints of the**Randall-Sundrum Model in flavor transitions

Rare B decays

Small NP contributions

Two clear messages for future experiments!

Conclusions

- ◆ The RS model is an <u>elegant way of addressing</u>
 - The gauge hierarchy problem
 - The SM flavor problem
- ◆ In spite of FCNC at tree level, <u>NP flavor problem</u> is under control because of
 - RS-GIM mechanism
 - Protection mechanism (P_{IR} symmetry)

Conclusions

- ◆ The RS model is an <u>elegant way of addressing</u>
 - The gauge hierarchy problem
 - The SM flavor problem
- ◆ In spite of FCNC at tree level, <u>NP flavor problem</u> is under control because of
 - RS-GIM mechanism
 - Protection mechanism (P_{IR} symmetry)

Possibility of testing the model at the LHC

◆ The <u>flavor phenomenology</u> is interesting

(f=1 TeV)

- \bullet $\mathsf{E}_{_{\mathrm{K}}}$ is in general too large, but it can be fitted in particular regions of parameter space
- \bullet $S_{\psi\phi}$ can be strongly enhanced
- ullet Possible strong enhancements in rare K decay branching ratios but not simultaneously to $S_{\psi\phi}$
- Small NP effects in rare B decays branching ratios

Non Universality & FCNC at Tree Level (2)

◆ <u>Before EWSB</u> the Z boson of the SM:

$$Z = Z^{(0)}$$

$$Z = aZ^{(0)} + bZ^{(1)} + cZ_X^{(1)}$$

KK gauge bosons

Shape function distorted on the IR brane

FCNC at tree level for the Z boson of the SM

This effect is also present for **charged currents** but it is **subleading**. In the SM flavor changing charged currents are already present at tree level.