VERITAS Dark Matter search in Dwarf Spheroidal galaxies

On behalf of VERITAS Collaboration Chiara Giuri (DESY, Zeuthen) MAGIC Dark Matter Workshop Barcelona, 17.01.19

Introduction to VERITAS

- Located at the Fred Lawrence Whipple Observatory (FLWO) in southern Arizona (31 40N, 110 57W, 1.3km a.s.l.)
- Array of four 12 m telescopes separated ~100 m each other
- Energy range: 85 GeV to 30 TeV
- FoV ~ 3.5°, each camera has 499 PMTs
- Fully operational since 2007 (V4), then two major upgrades:
 - ➡ In 2009 T1 was relocated (V5)
 - In 2012 new higher quantum efficiency PMTs (V6)
- Every year ~ 1000 hrs dark + 200 hrs under bright moonlight conditions (since 2012)

VERITAS Dark Matter Targets

Dwarf Galaxies:

- High mass to light ratio
- Close by (~10's kpc)
- No known astrophysical background

Galactic center:

- High DM content
- Close by (~8 kpc)
- High astrophysical background

Fermi Unidentified Objects:

- DM subhalos?
- Two suitable candidates in the 2FGL observed by VERITAS

Galaxy clusters:

- Large DM content (~80% of their masses)
- Very distant (~10's Mpc)

Why searching for Dark Matter in dSphs?

VERITAS dSphs observations: 2007-2017

Dwarf	$\log_{10} J_1(0.5^\circ)$	$\log_{10} J_2(0.5^\circ)$	$\log_{10} D_1(0.5^\circ)$	Exposure v4	Exposure v5	Exposure v6	Total Exposure
	$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV cm}^{-2}]$	[min]	[min]	[min]	[min]
Segue 1	$19.4^{+0.3}_{-0.4}$	$17.0^{+2.1}_{-2.2}$	$18.0^{+0.2}_{-0.3}$	0	6121	4921	11042
Ursa Major II	$19.4_{-0.4}^{+0.4}$	$19.9^{+0.7}_{-0.5}$	$18.4_{-0.3}^{+0.3}$	0	0	10869	10869
Ursa Minor	$18.9^{+0.3}_{-0.2}$	$19.0^{+0.1}_{-0.1}$	$18.0^{+0.2}_{-0.1}$	711	2209	6844	9724
Draco	$18.8\substack{+0.1\\-0.1}$	$19.1_{-0.2}^{+0.4}$	$18.5^{+0.1}_{-0.1}$	1169	2170	3435	6813
Coma Berencies	$19.0^{+0.4}_{-0.4}$	$19.6^{+0.8}_{-0.7}$	$18.0^{+0.2}_{-0.3}$	0	0	2204	2204
Segue II	$16.2^{+1.1}_{-1.0}$	$18.9^{+1.1}_{-1.1}$	$15.9^{+0.4}_{-0.4}$	0	0	1128	1128
Boötes 1	$18.2^{+0.4}_{-0.4}$	$18.5^{+0.6}_{-0.4}$	$17.9^{+0.2}_{-0.3}$	960	0	0	960
Leo II	$18.0^{+0.2}_{-0.2}$	$17.8^{+0.2}_{-0.2}$	$17.2^{+0.4}_{-0.5}$	0	0	946	946
Willman 1	N/A	N/A	N/A	931	0	0	931
Triangulum II	N/A	N/A	N/A	0	0	909	909
Canes Ver. II	$17.7^{+0.5}_{-0.4}$	$18.5^{+1.2}_{-0.9}$	$17.0^{+0.2}_{-0.2}$	0	0	864	864
Canes Ver. I	$17.4_{-0.3}^{+0.4}$	$17.5^{+0.4}_{-0.2}$	$17.6^{+0.4}_{-0.7}$	0	0	850	850
Hercules I	$16.9^{+0.7}_{-0.7}$	$17.5^{+0.7}_{-0.7}$	$16.7^{+0.4}_{-0.4}$	0	0	794	794
Sextans I	$18.0^{+0.2}_{-0.2}$	$17.6^{+0.2}_{-0.2}$	$17.9^{+0.1}_{-0.2}$	0	0	783	783
Draco II	N/A	N/A	N/A	0	0	598	598
Ursa Major I	$17.9^{+0.6}_{-0.3}$	$18.7^{+0.6}_{-0.5}$	$17.6^{+0.2}_{-0.4}$	0	0	482	482
Leo I	$17.8_{-0.2}^{+0.2}$	$17.8_{-0.2}^{+0.5}$	$17.9_{-0.2}^{+0.2}$	0	0	409	409
Leo V	$16.4_{-0.9}^{+0.9}$	$16.1^{+1.2}_{-1.0}$	$15.9_{-0.5}^{+0.5}$	0	0	167	167
Leo IV	$16.3^{+1.1}_{-1.7}$	$16.2^{+1.5}_{-1.6}$	$16.1_{-1.1}^{+0.7}$	0	0	151	151

J-factors from Geringer-Sameth et al., 2015 (J_1) and Bonnivard et al., 2015 (J_2)

"Survey" dSphs: covering nearly all Northern Hemisphere dSphs

"Deep Exposure" dSphs: with the best J-factor in literature

DESY. | Chiara Giuri | VERITAS dSphs DM search | MAGIC Dark Matter workshop , Barcelona 16th-17th January

VERITAS dSphs observations: 2007-2017

J-factors from Geringer-Sameth et al., 2015 (J_1) and Bonnivard et al., 2015 (J_2)	J-fa	actors from	Geringer-Sameth	et al., 2015	(J_1)	and Bonnivard et al., 201	15 ((J_2)
--	------	-------------	-----------------	--------------	---------	---------------------------	------	---------

	Dwarf	$\log_{10} J_1(0.5^\circ)$	$\log_{10} J_2(0.5^\circ)$	$\log_{10} D_1(0.5^\circ)$	Exposure v4	Exposure v5	Exposure v6	Total Exposure
		$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV cm}^{-2}]$	[min]	[min]	[min]	[min]
Γ	Segue 1	$19.4^{+0.3}_{-0.4}$	$17.0^{+2.1}_{-2.2}$	$18.0^{+0.2}_{-0.3}$	0	6121	4921	11042
	Ursa Major II	$19.4_{-0.4}^{+0.4}$	$19.9^{+0.7}_{-0.5}$	$18.4_{-0.3}^{+0.3}$	0	0	10869	10869
	Ursa Minor	$18.9^{+0.3}_{-0.2}$	$19.0^{+0.1}_{-0.1}$	$18.0^{+0.2}_{-0.1}$	711	2209	6844	9724
I	Draco	$18.8^{+0.1}_{-0.1}$	$19.1_{-0.2}^{+0.4}$	$18.5_{-0.1}^{+0.1}$	1169	2170	3435	6813
L	Coma Berencies	$19.0^{+0.4}_{-0.4}$	$19.6_{-0.7}^{+0.8}$	$18.0^{+0.2}_{-0.3}$	0	0	2204	2204

Majority of Dwarf time allocation

Classical dSphs $(L > 10^5 L_{sol})$ and ultra-faint dSphs $(L = 10^{3-5} L_{sol})$

1. Time is divided among different sources

2. Mitigates **against wrong** estimation of J profile (e.g., Segue 1)

"Deep Exposure" dSphs: with the best J-factor in literature

VERITAS dSphs observations: 2007-2017

J-factors from Geringer-Sameth et al., 2015 (J_1) and Bonnivard et al., 2015 (J_2)

		S	horter ob time	serving s				
Dwarf	$\log_{10} J_1(0.5^\circ)$	$\log_{10} J_2(0.5^\circ)$	$\log_{10} D_1(0.5^\circ)$	Exposure v4	Exposure v5	Exposure v6	Total Exposure	
Sagua II	16 2 ^{+1.1}	18 0+1.1	15 0 ^{+0.4}			1128	1128	1
Boötes 1	$10.2_{-1.0}$ 18 2 ^{+0.4}	$18.9^{-1.1}_{-1.1}$	$13.9_{-0.4}$ 17 9 ^{+0.2}	960		0	960	
Leo II	$18.2_{-0.4}$ 18.0 ^{+0.2}	17.5 - 0.4 17.8 + 0.2	$17.9_{-0.3}$ 17 2 ^{+0.4}	0		946	946	
Willman 1	N/A	N/A	N/A	931	0	0	931	
Triangulum II	N/A	N/A	N/A	0	0	909	909	
Canes Ver. II	$17.7^{+0.5}_{-0.4}$	$18.5^{+1.2}_{-0.0}$	$17.0^{+0.2}_{-0.2}$	0	0	864	864	
Canes Ver. I	$17.4^{+0.4}_{-0.3}$	$17.5^{+0.4}_{-0.2}$	$17.6^{+0.4}_{-0.7}$	0	0	850	850	
Hercules I	$16.9^{+0.7}_{-0.7}$	$17.5^{+0.7}_{-0.7}$	$16.7^{+0.4}_{-0.4}$	0	0	794	794	
Sextans I	$18.0^{+0.2}_{-0.2}$	$17.6^{+0.2}_{-0.2}$	$17.9^{+0.1}_{-0.2}$	0	0	783	783	
Draco II	N/A	N/A	N/A	0	0	598	598	
Ursa Major I	$17.9^{+0.6}_{-0.3}$	$18.7^{+0.6}_{-0.5}$	$17.6^{+0.2}_{-0.4}$	0	0	482	482	
Leo I	$17.8_{-0.2}^{+0.2}$	$17.8_{-0.2}^{+0.5}$	$17.9_{-0.2}^{+0.2}$	0	0	409	409	
Leo V	$16.4_{-0.9}^{+0.9}$	$16.1^{+1.2}_{-1.0}$	$15.9_{-0.5}^{+0.5}$	0	0	167	167	
Leo IV	$16.3^{+1.1}_{-1.7}$	$16.2^{+1.5}_{-1.6}$	$16.1_{-1.1}^{+0.7}$	0	0	151	151	
	-	-	-	-	_		-	

"Survey" dSphs: covering nearly all Northern Hemisphere dSphs

DESY. | Chiara Giuri | VERITAS dSphs DM search | MAGIC Dark Matter workshop , Barcelona 16th-17th January

J factors from Geringer-Sameth et al., 2015

Consider spherically symmetric density profile

$$\rho(r) = \frac{\rho_s}{\left(r/r_s\right)^{\gamma} \left[1 + \left(r/r_s\right)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$$
(Zhao et al 1996)

- Annihilation flux depends on source's gravitational potential
- Assumptions:
 - 1. Dynamic equilibrium and spherical symmetry $\frac{1}{\nu(r)}\frac{d}{dr}[\nu(r)\overline{u_r^2}(r)] + 2\frac{\beta_a(r)\overline{u_r^2}(r)}{r} = -\frac{d\Phi}{dr} = -\frac{GM(r)}{r^2}$
 - 2. Stars distributed according to Plummer profile
 - 3. The distribution of stellar velocities is not influenced by presence of binary stars
 - 4. Stars negligibly affect gravitational potential

$$\sigma^{2}(R)\Sigma(R) = 2\int_{R}^{\infty} \left(1 - \beta_{a}(r)\frac{R^{2}}{r^{2}}\right) \frac{\nu(r)\,\overline{u_{r}^{2}}(r)\,r}{\sqrt{r^{2} - R^{2}}}\,dr.$$

Mass profile relates to observable profiles

Used to fit models for $\rho(\mathbf{r})$ to observed velocity dispersion and surface brightness profiles

J factors from Geringer-Sameth et al., 2015

"Crescent" background method used in combined dSphs analysis

Event Weighting method

A. Geringer-Sameth, S. M. Koushiappas, and M. G. Walker, Phys. Rev. D 91, 083535 (2015).

Where..

Depends on true gamma-ray energy, zenith and azimuth angles, background noise, configuration epoch, offset, cuts

Energy dispersion: quantifies energy resolution and bias of VERITAS

Systematic uncertainties

- 1. Imperfect knowledge of DM density profile: different DM halos fit the kinematic observables
- 2. Wrong calculation of velocity dispersion leads to mis-estimate of J profiles (e.g., **Segue 1 excluded**)

Annihilation cross section limits from the combined dwarves analysis

DESY. | Chiara Giuri | VERITAS dSphs DM search | MAGIC Dark Matter workshop , Barcelona 16th-17th January

Expected annihilation cross section limits from the combined dwarves analysis

DESY. | Chiara Giuri | VERITAS dSphs DM search | MAGIC Dark Matter workshop , Barcelona 16th-17th January

Improvement respect to 48 hrs on Segue 1

VERITAS dSphs observations: Ursa Major II

- Observed with VERITAS from 2013-2017
- 145 hrs after quality cuts
- An excess of 1σ found at Ursa Major II position
- Flux upper limit $1.4 \times 10^{-8} m^{-2} s^{-1}$ above 200 GeV at a 95% c.l.
- Unbinned Maximum Likelihood used to compute limits (Aleksić et al., 2014)
- Annihilation spectrum from PPPC 4 DM ID (Cirelli et al., 2011)
- Ursa Major II limit is more constraining up to 30% than combined limit

Future work

VERITAS has huge dSphs dataset still to be analysed

- Extended analysis for dSphs
- Analysis with *Boosted decision trees* for gamma-hadron separation
- Analysis with image template method (Christiansen, J. & the VERITAS Collaboration)

Future work

VERITAS has huge dSphs dataset still to be analysed

- Extended analysis for dSphs
- Analysis with *Boosted decision trees* for gamma-hadron separation
- Analysis with image template method (Christiansen, J. & the VERITAS Collaboration)

Improved sensitivity to weak DM signal

Conclusions and perspectives

- 1. VERITAS published **combined results** using 216 hrs in the energy range 100 GeV-100TeV
- 2. VERITAS put integral flux upper limit above 300 GeV for each dSph
- 3. VERITAS has a larger dataset: new data from 2013-2018 still to be analysed
- 4. More sensitive analysis techniques: *Boosted decision trees* and image template method to **improve the sensitivity** and look for weaker sources
- 5. Analysis of dSphs as (slightly) extended sources
- 6. Joint binned likelihood analysis with MAGIC, H.E.S.S., Fermi-LAT and HAWC

(extends up to higher and lower energies)

THANKS FOR YOUR ATTENTION

Back-up slides

Conclusions and perspectives

Source name	Observed by	Number of observed hours / Exposure
Boötes 1	VERITAS	14.0
Carina	H.E.S.S.	22.9
Coma Berenices	H.E.S.S.	10.9
Draco	VERITAS	49.8
Fornax	H.E.S.S.	6.0
Ursa Major II	MAGIC	94.8
Ursa Minor	VERITAS	60.4
Sagittarius	H.E.S.S.	85.5
Sculptor	H.E.S.S.	11.8
Segue 1	MAGIC	43.2
	VERITAS	92.0
Willman 1	VERITAS	13.6
_		

Flux upper limits

Estimation of r_{max} $\mathbf{P}(z|R) \propto \left(1 + \frac{z^2 + R^2}{R_e^2}\right)^{-3/2} | \begin{array}{c} \text{Probability of its} \\ \text{line-of-sight distance z} \\ \text{proportional to} \end{array} \right)$ Given a star Plummer profile $\mathbf{P}(r|R) = \int \mathbf{P}(r|z,R) \, \mathbf{P}(z|R) \, dz$ **Probability distribution** for the unprojected distance r, given the projected distance R If r > R $CDF(r|R) = \int_0^r P(r'|R)dr' = \frac{\left(r^2 - R^2\right)^{1/2} \left(r^2 + \frac{1}{2}(3R_h^2 + R^2)\right)}{\left(r^2 + R_h^2\right)^{3/2}}$

 $CDF_{max}(r|R_1,\ldots,R_n) = CDF(r|R_1)\cdots CDF(r|R_n)$