CLUMPY: A public code for y-ray and v signals from dark matter structures

Moritz Hütten, MPP Munich

for the CLUMPY developers: Vincent Bonnivard, Moritz Hütten, Emmanuel Nezri, Aldée Charbonnier, Céline Combet, David Maurin

MAGIC Dark Matter Workshop, IEEC Barcelona, Jan 16 2019

http://lpsc.in2p3.fr/clumpy/

Hütten et al. (CPC, 2018), arXiv:**1806.08639** Bonnivard et al. (CPC, 2016), arXiv:**1506.07628** Charbonnier et al. (CPC, 2012), arXiv:**1201.4728**

1. Introduction - physics problem

Indirect DM detection in y-rays and v

Indirect DM detection in neutral particles

Prompt γ-ray/v flux for single source & DM annihilation: (CLUMPY can also do all calculations for DM decay)

Detection or non-detection:

J-factor and uncertainty must be well-known for conclusions on particle physics

Annihilation: Signal depends sensibly on DM distribution in target

E.g., innermost 0.1° Galactic DM halo:

NFW or Einasto vs. *Burkert* profile, annihilation: Factor **2000**, Decay: Factor **10**

J-factor main uncertainty in indirect DM searches

Indirect DM detection in neutral particles

Where to look?

Massive & dense (M^2/V) vs. close ($1/d^2$) vs. little astrophysical background

⁺ single galaxy clusters (d > Mpc)

+ ensemble average of extragalactic DM (d > Gpc)

CLUMPY calculates *J*-factors/fluxes for all the various targets

Aquarius simulation - Springel et al. (Nature, 2008)

Indirect DM detection in extragalactic y-rays

Consider for $\gamma\text{-rays}$ from outside the local Universe

- Redshifting of the γ -rays/ neutrino energy loss
- γ-rays absorption by pair-production with photons of the extragalactic background light (EBL)

Indirect DM detection in extragalactic y-rays

More intricate form of flux equation (single extragalactic object):

Separation in particle physics/astrophysics term breaks down if considering a signal originating from multiple redshift shells

A closer look to the J-factor

A closer look to the J-factor

No analytic solution for $\frac{dJ_{sm}}{d\Omega}(\theta) = \int_{l_{min}}^{l_{max}} \rho_{sm}^2 dl$ or $\frac{dJ_{sm}}{d\Omega}(\theta) = \int_{l_{min}}^{l_{max}} \rho_{sm} dl$ with usual descriptions:

	Burkert (1995):
kBURKERT	$\rho\left(r \mid r_{0}, \rho_{0}\right) = \frac{\rho_{0}}{\left(1 + \frac{r}{r_{0}}\right) \times \left[1 + \left(\frac{r}{r_{0}}\right)^{2}\right]},$
	with $r_{-2} \approx 1.5213797068 \times r_0$ and $\rho_0 = \rho(r = 0)$.
	Navarro et al. (2004), Springel et al. (2008):
KEINASTO	$\rho\left(r \mid r_{-2}, \rho_{-2}; \alpha\right) = \rho_{-2} \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_{-2}}\right)^{\alpha} - 1\right]\right\}$
	Merritt et al. (2006), Graham et al. (2006):
kEINASTO_N	$\rho(r \mid r_{\rm e}, \rho_{\rm e}; n) = \rho_{\rm e} \exp\left\{-d_n \times \left[\left(\frac{r}{r_{\rm e}}\right)^{1/n} - 1\right]\right\},$
	with $d_n \approx 3n - \frac{1}{3} + \frac{0.0079}{n}$ (see Merritt et al. (2006)) and $r_{-2} = r_c \times \left(\frac{2n}{d_n}\right)^n$
	Hernquist (1990) and Zhao (1996):
kZHA0	$\begin{split} \rho\left(r \mid r_{s}, \rho_{s}; \alpha, \beta, \gamma\right) &= \frac{2^{\frac{\beta-\gamma}{\alpha}} \times \rho_{s}}{\left(\frac{t}{r_{s}}\right)^{r} \times \left[1 + \left(\frac{\tau}{r_{s}}\right)^{a}\right]^{\frac{\beta-\gamma}{\alpha}}}, \text{ with} \\ r_{-2} &= r_{s} \times \left(\frac{\beta-2}{2-\gamma}\right)^{-1/\alpha}. \end{split}$
	Note that we use the description where $\rho_{\rm s}=\rho(r_{\rm s}).$

CLUMPY: J-factor integrator (with accounting for many subtleties)

A closer look to the J-factor: substructures and boost

Annihilation boost in substructures $\int (\frac{1}{2} \frac{1}$

Annihilation boost in substructures $\int (\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)^2 = 2 \times \int \left(\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array}\right)^2 \right)^2$

Annihilation boost in substructures

Annihilation boost in substructures $\int (1 + 1)^2 = 2 \times \int (1 + 1)^$

While mass

 $\int_{M}^{M_{\text{max}}} M \frac{\mathrm{d}P_M}{\mathrm{d}M} \,\mathrm{d}M \quad \text{may well converge for } M_{\text{min}} \to 0, \, \text{substructure boost may not}$

2. The code

```
if (is_simple_interp) printf(" ... Fill interpolation function (%d lin-steps) ...\n", n_base);
else printf(" ... Fill interpolation function (%d log-steps) ... \n", n_base);
```

```
j_1D_base.assign(n_base, 1.e-40);
phi_base.assign(n_base, 1.e-40);
iphi_inbase.assign(n_1D, -1);
double delta_phi_base;
if (is_simple_interp) delta_phi_base = (phi_max - phi_min) / double(n_base - 1);
else delta_phi_base = pow(phi_max / alpha_quad_start, 1. / double(n_base - 1));
for (int i = 0; i < n_base; ++i) {</pre>
```

```
(is_simple_interp) phi_base[i] = phi_min + i * delta_phi_base;
      phi_base[i] = alpha_quad_start * pow(delta_phi_base, i);
    (switch_j == 0) {
      (f_dm > 1.e-3)
       jopt = jsmooth_mix(mtot, par_tot, phi_base[i], theta_1D, lmin, lmax, eps, f_dm, par_dpdv);
       jopt = jsmooth(par_tot, phi_base[i], theta_1D, lmin, lmax, eps);
        if (switch_j == 1) {
    for (int k = 0; k < n_mass; ++k) {</pre>
       if (l_crit[k] < lmax)
          jopt += jsub_continuum(ntot_subs, par_dpdv, phi_base[i], theta_1D,
                                 l_crit[k], lmax, par_subs, m1[k], m2[k]);
        if (switch_j == 2) {
    for (int k = 0; k < n_mass; ++k) {</pre>
       if (l_crit[k] < lmax)
          jopt += frac_nsubs_in_m1m2(&par_subs[8], m1[k], m2[k], gSIM_EPS)
                  * jcrossprod_continuum(mtot, par_tot, phi_base[i], theta_1D,
                                         l_crit[k], lmax, eps, f_dm, par_dpdv);
    (jopt == 0.) jopt = 1.e-40;
 j_1D_base[i] = jopt;
 (int i = 0; i < n_1D; ++i)
iphi_inbase[i] = TMath::BinarySearch(n_base, &phi_base[0], phi_tab[i]);
```

Max-Planck britint für Physik

What is CLUMPY?

- **Open-source** code, written in C/C++
- Public development on GitLab
- Depends on:
 - gsl
 - Heasarc's cfitsio
 - HEALPix (shipped with the code)
 - CERN's ROOT (optional)
 - GreAT (lpsc.in2p3.fr/great, optional)
- Runs on Linux and MacOS X
- Extensive web documentation

Open source code to provide the community with reproducible and comparable models for *J*-factors and prompt γ -ray/v fluxes

CLUMPY features (I): $\rho_{\rm sm} + \rho_{\rm subs} \rightarrow \textit{J-factor/flux}$

J-factors/fluxes of individual objects (e.g. dSph's) from **pre-defined DM profiles**

- Propagate error bars from DM profiles to J-factors and limits on DM (Bonnivard ApJ, MNRAS, 2015)
- Take into account substructures:
 - resolved (statistical) + unresolved: **boost**
 - vary distribution within host halo (antibiased, own profile,...)
 - Clumps within clumps: multiple levels of selfsimilar sub-subclustering (converges for ~2 levels)
- allow triaxial distortion of halo profile (semiaxis ratio a, b, c)

N-body simulations/kinematic analyses find triaxial halo shapes

Max-Planck-Institut für Physi

Comparison of classical dSph, brightest galaxy clusters, and galactic DM foreground

(Charbonnier et al., MNRAS, 2011; Nezri et al., MNRAS, 2012)

LMC $dJ/d\Omega$ profile with resolved substructure model (analysis done by M. Castaño, São Paulo)

16

Some results: Boost uncertainty (Bonnivard et al., 1506.07628)

M_{vir} [M]

1

CLUMPY features (I): $\rho_{\rm sm} + \rho_{\rm subs} \rightarrow \textit{J-factor/flux}$

J-factors/fluxes of individual objects (e.g. dSph's) from **pre-defined DM profiles**

- ROOT **pop-up graphics** (1D and 2D)
- 2D images smoothable with Gaussian beam,
- Choose output format: ROOT, HEALPix FITS (2D), ASCII
 /ctools
- FITS images interfaceable with gammalib/

HEALPix pixelization (FITS format)

projected FITS image

CLUMPY features (I): $\rho_{\rm sm} + \rho_{\rm subs} \rightarrow \textit{J-factor/flux}$

J-factors/fluxes of individual objects (e.g. dSph's) from **pre-defined DM profiles**

- Directly compute differential/integral fluxes (1D and 2D), relying on PPPC4DMID (Cirelli et al., 2010)
- **Correct cosmology** (line-of-sight and angular diameter distance) + **EBL flux absorption** for extragalactic objects

19

CLUMPY features (II): Full-sky MW analysis with subhalos

Skymaps of full or partial *J*-factor sky from DM in the Milky Way halo

- Fast realistic synthetic skymaps at any instrumental resolution
 - recover N-body simulation end-products from a handful of parameters
 - extend N-body simulation results by varying key parameters to study impact on halo/ substructure brightness
- Resolved substructure
 - Pre-select brightest subhalos for speed (e.g., reduce 10^{15} total subhalos in the MW to $\sim 10^4$ at a precision of 2% and $\theta_{int} = 0.2^{\circ}$).
 - allow statistical assessment of MW substructure properties (average mass, distance, luminosity,...)

Hütten et al., JCAP (2016)

CLUMPY features (III): Jeans analysis module

From stellar kinematics to DM profile

CLUMPY features (III): Jeans analysis module

Modelling light profile and anisotropy profile:

Abel-transformed projected Jeans equation:

$$I(R)\sigma_p^2(R) = 2 \int_R^{\infty} \left(1 - \beta_{ani}(r)\frac{R^2}{r^2}\right) \frac{\nu(r)\,\bar{\nu_r^2}(r)\,r}{\sqrt{r^2 - R^2}} \,\mathrm{d}r$$
$$= 2 \int_0^{\infty} \left(1 - \beta_{ani}(r)\frac{R^2}{r^2}\right) \nu(r)\,\bar{\nu_r^2}(r) \,\mathrm{d}y.$$

Keyword	Surface brightness $\Sigma(R) \equiv I(R)$		Density profile $\rho(r) \equiv \nu(r)$	# free param.	References			
kEXP2D	$\Sigma_0 imes \exp\left(-rac{R}{r_c} ight)$	\rightarrow	$\frac{\Sigma_0}{\pi r_c} \times K_0\left(\frac{r}{r_c}\right)$	2	Evans, An, and Walker (2009)		\mathbf{V}	
KEXP3D	$2\rho_0 R \times K_1 \left(\frac{R}{r_c}\right)$	~	$ \rho_0 \times \exp\left(-\frac{\mathbf{r}}{\mathbf{r}_c}\right) $	2	Evans, An, and Walker (2009)	Keyword	Anisotropy	f(r) to solve Eq. (6.10)
	$\Sigma_0 imes \left[\left(1 + rac{R^2}{r_c^2} ight)^{-1/2} ight.$	$\left(\frac{R^2}{r_c^2}\right)^{-1/2}$ $\frac{\Sigma_0}{\pi r_c} \times \frac{\cos^{-1}(z)/z - \sqrt{1-z^2}}{2(1+z^2)^{3/2}}$		King (1962),		$p_{anis}(r)$	$= \nu(r)v_r(r)$	
kKING2D	$-\left(1+\frac{r_{\rm lim}^2}{r_{\rm c}^2}\right)^{-1/2}\right]^2$	\rightarrow	with $z^2 = \frac{1 + r^2 / r_c^2}{1 + r_{\lim}^2 / r_c^2}$	3	Strigari et al. (2008)	KCONSTANT	ßo	$r^{2\beta_0}$
kPLUMMER2D	$rac{\Sigma_0}{\pi r_c^2} imes \left(1 + rac{R^2}{r_c^2} ight)^{-2}$	\rightarrow	$\frac{3\Sigma_0}{4\pi r_c^3} \times \left(1 + \frac{r^2}{r_c^2}\right)^{-5/2}$	2	Plummer (1911), Evans et al. (2009)		70	
	$\Sigma_{\text{true}}\left\{ \mathbf{k} \left[(\mathbf{R})^{\frac{1}{n}} 1 \right] \right\}$		Sérsic (1968), Prugniel & Simien	kBAES	$\frac{\beta_0 + \beta_\infty (r/r_a)^\eta}{1 + (r/r_a)^\eta}$	$r^{2\beta_0} \left[1 + \left(\frac{r}{r_a}\right)^{\eta}\right]^{2(\beta_\infty - \beta_0)/\eta}$		
kSERSIC2D	$u_0 \propto x_p \left\{ -u_n \left[\left(\frac{1}{r_c} \right)^{-1} \right] \right\}$ with $b_n = 2n - 1/3 + 0.009876/n$	\rightarrow	$-\frac{1}{\pi} \int_{r}^{\infty} \frac{\mathrm{d}\Sigma(R)}{\mathrm{d}R} \times \frac{\mathrm{d}R}{\sqrt{R^{2} - r^{2}}}$	3	(1997), Graham and Driver (2005), Merritt et al. (2006)	KOSIPKOV	$\frac{r^2}{r^2 + r_a^2}$	$\frac{r_a^2+r^2}{2}$
kZHA03D	$2\int_{R}^{\infty}\rho(r) r \times \frac{\mathrm{d}r}{\sqrt{r^2-R^2}}$	←	$\rho_0 \times \frac{(\mathbf{r}/\mathbf{r}_{\mathrm{s}})^{-\gamma}}{\left[1 + \left(\frac{\mathbf{r}}{\mathbf{r}_{\mathrm{s}}}\right)^{\alpha}\right]^{(\beta - \gamma)/\alpha}}$	5	Hernquist (1990), Zhao (1996)		(special case of kBAES)	r_a^2

CLUMPY features (III): Jeans analysis module

Dsph galaxy analysis: ranking and/or credible intervals

Many new MW satellite galaxies just discovered (DES) & expected (e.g., LSST): CLUMPY can be used as soon as spectroscopic data is available

CLUMPY features (IV): Extragalactic diffuse intensity

Summary

CLUMPY: multi-purpose code for indirect DM detection modelling and analysis

- Code distribution and usage:
 - Open-source: reproducible and comparable *J*-factor calculations
 - User-friendly Sphinx documentation, lots of examples & tests to run
 - All runs from single parameter file or command line (profiles, concentration, spectra...)
- Fast computation of:
 - Annihilation or decay astrophysical factors using any DM profile
 - Boost from substructures and its uncertainty
 - Integrated/differential fluxes in γ-rays and neutrinos, mixing user-defined branching ratios
- Four main modules / physics cases:
 - I. DM emission from list of objects (dSph galaxies, galaxy clusters)
 - II. Full-sky map mode for Galactic DM emission with substructure + additional objects from list
 - III. Jeans module: full analysis from kinematic data to *J*-factors for dSph
 - IV. Full-sky map mode for extragalactic DM emission

Growing use in the community for state-of-the-art DM studies for many targets (dSphs, cluster, dark clumps...) and by various collaborations (MAGIC, CTA, HAWC) Download from https://lpsc.in2p3.fr/clumpy/

0

Summary

 \bigcirc

All parameters controlled from parameter file

Name		Definition
Cosmolog	gical parameters (updated from Planch	k results)
gCOSMO_H	UBBLE	Hubble expansion rate $h = H_0/(100 \text{ km s}^{-1} \text{ Mpc}^{-1})$ [-]
gCOSMO_R	HOO_C	Critical density of the universe $[M_{\odot} \text{ kpc}^{-3}]$
gCOSMO_0	MEGAO_M	Present-day pressure-less matter density
gCOSMO_0	MEGAO_LAMBDA	Present-day dark energy density
Dark mat	ter parameters	
gDM_FLAG	_CVIR_DIST	Distribution around $\bar{c}(M)$ from which concentrations are drawn: {kLOGNORM, kDIRAC}
gDM_LOGC	VIR_STDDEV	Width of log-normal $c(M)$ distribution (if gDM_FLAG_CVIR_DIST=kLOGNORM)
gDM_SUBS	NUMBEROFLEVELS	Number of levels for subhaloes
gDM_MMIN	SUBS	Minimal mass of DM haloes $[M_{\odot}]$
gDM_MMAX	FRAC_SUBS	Defines the maximal mass of clump in host halo: $M_{\text{max}} = \text{gDM}$ MMAXFRAC_SUBS $\times M_{\text{host}}$
gDM_RHOS	AT	Saturation density for DM $[M_{\odot} \text{ kpc}^{-3}]$
Generic (s	sub-)halo structural parameters (DI	PE = DSPH, GALAXY or CLUSTER)
gTYPE_CL	UMPS_{FLAG_PROFILE,}	Description of subhaloes for host TYPE: $c(M)$, inner profile, shape parameters
gTYPE_DP	DM_SLOPE	Slope of the clump mass function
gTYPE_DP	DV_{FLAG_PROFILE, RSCALE,}	Spatial distribution of substructures in object TYPE
gTYPE_SU	BS_MASSFRACTION	Mass fraction of the host halo in clumps
Milky-Wa	ay DM (sub-)halo structural parame	ters
gGAL_CLU	MPS_{FLAG_PROFILE,}	Description of Milky-way DM subhaloes
gGAL_DPD	M_SLOPE	Slope of clump mass function
gGAL_DPD	V_{FLAG_PROFILE, RSCALE,}	Spatial distribution of substructures in object TYPE
gGAL_SUB	$S_{M1}, M2, N_{INM1M2}$	Number of Milky-Way subhaloes in $[M_1, M_2]$
gGAL_{RHO	DSOL, RSOL, RVIR}	Local DM density [GeV cm ⁻³], distance GC–Sun [kpc], virial radius [kpc]
gGAL_TOT	_{FLAG_PROFILE, RSCALE,}	Description of the total DM profile
gGAL_TRI	AXIAL_AXES[0-3]	Dimensionless major (a), intermediate (b), and minor (c) axes (see Eq. (18))
gGAL_TRI	AXIAL_ROTANGLES [0-3]	Euler rotation angles for triaxial Milky-Way halo [deg]
gGAL_TRI	AXIAL_IS	Switch-on or off triaxiality calculation (i.e., use or not the 2 parameters above)

All parameters controlled from parameter file

Particle physics ingredients (for γ -ray and ν flux calculation)

gPP_BR[gN_PP_BR]	List of comma-separated values of branching ratios for the 28 channels
gPP DM ANNIHIL DELTA	For annihilating DM, factor 2 in calculation if Majorana, 4 if Dirac
gPP_DM_ANNIHIL_SIGMAV_CM3PERS	For annihilating DM, velocity averaged cross-section $\langle \sigma v \rangle_0$ [cm ³ s ⁻¹]
gPP_DM_DECAY_LIFETIME_S	For decaying DM, lifetime τ_{DM} of DM candidate [s]
gPP_DM_IS_ANNIHIL_OR_DECAY	Switch for annihilating or decaying DM (replace deprecated gSIMU_IS_ANNIHIL_OR_DECAY)
gPP_DM_MASS_GEV	Mass $m_{\rm DM}$ of the DM candidate [GeV]
gPP_FLAG_SPECTRUMMODEL	Model to calculate final state (replace deprecated gDM_GAMMARAY_FLAG_SPECTRUM)
gPP_NUMIXING_THETA{12, 13, 23}_DEG	Neutrino mixing angles [deg]

Simulation parameters/outputs (for a given CLUMPY run)

gLIST_HALOES	DM haloes considered in J-factor calculations [default=data/list_generic.txt]
gLIST_HALOES_JEANS	Objects considered in Jeans's analysis [default=data/list_generic_jeans.txt]
gSIMU_ALPHAINT_DEG	Integration angle α_{int} [deg] (if gSIMU_HEALPIX_NSIDE not -1, use HEALPix resolution)
gSIMU_EPS	Precision used for any operation requiring one (numerical integration,)
gSIMU_SEED	Seed of random number generator to draw clumps (if 0, from computer clock)
gSIMU_FLAG_NUFLAVOUR	Choice of neutrino flavour (kNUE, kNUMU, kNUTAU)
gSIMU_FLUX_AT_E_GEV	Energy (GeV) at which to calculate fluxes
gSIMU_FLUX_E_MIN	Lower energy bound (GeV) for the integrated flux calculation
gSIMU_FLUX_E_MAX	Upper energy bound (GeV) for the integrated flux calculation
gSIMU_GAUSSBEAM_GAMMA_FWHM_DEG	Gaussian beam [deg] for γ -ray detector for skymaps smoothing (no smoothing if set to -1)
gSIMU GAUSSBEAM NEUTRINO FWHM DEG	Gaussian beam [deg] for ν detector for skymaps smoothing (no smoothing if set to -1)
gSIMU_HEALPIX_NSIDE	$N_{\rm side}$ of HEALPix maps (if -1, set to be as close as possible to $\alpha_{\rm int}$)
gSIMU_HEALPIX_RING_WEIGHTS_DIR	Ring weights directory for improved quadrature (optional)
gSIMU_IS_ASTRO_OR_PP_UNITS	Outputs (plots and files) in astro (M_{\odot} and kpc) or particle physics (GeV and cm) units.
gSIMU_IS_WRITE_FLUXMAPS	For 2D skymaps, whether to save or not γ -ray and ν fluxes (the J factor is always saved)
gSIMU_IS_WRITE_FLUXMAPS_INTEG_OR_DIFF	If gSIMU_IS_WRITE_FLUXMAPS is true, whether to save integrated or differential fluxes
gSIMU_IS_WRITE_GALPOWERSPECTRUM	Whether to calculate (and save) or not the DM power-spectrum for the Milky-Way
gSIMU_IS_WRITE_ROOTFILES	Whether to save or not .root files even if option -p is used (not enabled for skymaps and 'stat')
gSIMU_OUTPUT_DIR	Output directory to select other than local run (directory is output/ if set to -1)

