

DARK MATTER SUBHALOS [and gamma-ray DM searches]

Miguel A. Sánchez-Conde

Instituto de Física Teórica IFT UAM/CSIC & Departamento de Física Teórica Universidad Autónoma de Madrid

MAGIC DM school

Universidad de Barcelona, January 16-17 2019

CDM HALO SUBSTRUCTURE

GHALO simulation [Stadel+09]

luminous matter

Unobserved satellites

Milky Way virial radius

GHALO simulation [Stadel+o9]

The role of DM halo substructure in (indirect) DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

\rightarrow GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

 \rightarrow "SUBSTRUCTURE BOOSTS"

Important to characterize in detail the DM subhalo population

Subhalo mass function

$$\frac{\mathrm{d}N}{\mathrm{d}M} = a_0 \left(\frac{M}{m_0}\right)^n$$

(m_o = minimum subhalo mass)

Simulations: 1.9 < n < 2 LCDM predictions (PS theory): 1.8 < n < 2

A small variation makes a BIG difference!

Aquarius. Springel+o8

Caveat: below ~10⁷ solar masses the subhalo survival is uncertain

Subhalo radial distribution

In VL-II, subhalos follow the so-called antibiased distribution.

Biased in Aquarius.

$$n(r) \propto r \,\rho_{\rm host}(r) \qquad \rho_{\rm sub}^{VLII}(R) = \frac{\rho_{\rm tot}^{VLII}(R) \left(R/R_a\right)}{\left(1 + \frac{R}{R_a}\right)}$$

$n_{\rm sh}(r) \propto \rho_{\rm Ein}(r)$

$$\rho^{Aq}_{\rm sub}(R) = \rho_a \, \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{R}{R_a}\right)^\alpha - 1\right]\right\}$$

Subhalo DM density profiles

Springel+o8

Similar to those of main halos but in the outermost regions, where they exhibit a exponential cut-off (tidal stripping)

ightarrow 'standard' virial radius definition not valid

Subhalo 'concentrations'

- Difficulty in defining them:
 - More complex evolution compared to field halos.
 - Tidal forces modify the DM density profile (e.g. Kazantzidis+04)
 - Reduced R_{max}, i.e. the radius at which the maximum circular velocity
 V_{max} is reached (e.g. Bullock+01).
- Solution: choose a definition independent of the profile

$$c_{\rm V} = \frac{\bar{\rho}(R_{\rm max})}{\rho_c} = 2\left(\frac{V_{\rm max}}{H_0 R_{\rm max}}\right)^2$$

See also Diemand+o8

• Still useful to compare to the standard c₂₀₀:

For NFW:
$$c_{\rm V} = \left(\frac{c_{\Delta}}{2.163}\right)^3 \frac{f(R_{\rm max}/r_s)}{f(c_{\Delta})} \Delta$$

c_v results from VL-II and ELVIS

Clear increase of subhalo concentration as we approach the host halo center

Important implications for e.g. indirect detection of DM

The role of DM halo substructure in (indirect) DM searches

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

 \rightarrow "SUBSTRUCTURE BOOSTS"

Dwarf spheroidal satellite galaxies

- The most DM dominated systems + 0 known in the Universe.
- Around 30 confirmed dwarfs in 0 the Milky Way. More on the way!
- Close to us. Several within 50 kpc. Ο
- Free from bright astrophysical Ο gamma-ray sources.

EXCELLENT TARGETS FOR GAMMA-RAY DM SEARCHES

(so I can skip) 12

Several talks!

(Fornax

dwarf galaxy)

DM subhalos (a.k.a. 'dark satellites')

The most massive subhalos will host visible satellite galaxies Light subhalos expected to remain completely dark.

DM subhalo searches

I. (Strong) LENSING

[Vegetti+10,12,18; Hezaveh+16; Nierenberg+14,17; Birrer+17]

II. STELLAR GAPS

[Carlberg 12,15; Erkal+15, 16, 17]

DM SUBHALO SEARCHES: III. GAMMA RAYS

- If DM is made of WIMPs and annihilates \rightarrow gamma rays
- Maybe the only way to probe subhalo masses below ~10⁷ solar masses
- The only subhalo search that provides info on the nature of the DM particle.

DM SUBHALO SEARCHES: III. GAMMA RAYS

- If DM is made of WIMPs and annihilates \rightarrow gamma rays
- Maybe the only way to probe subhalo masses below ~10⁷ solar masses
- The only subhalo search that provides info on the nature of the DM particle.

Dark satellites' search in Fermi-LAT catalogs

Around 1/3 of sources in LAT catalogs are unidentified (~1000 unIDs in the 3FGL) Exciting possibility: some of them may be subhalos annihilating to gammas!

Objective: to build a list of potential DM subhalo candidates by identifying those unIDs compatible with DM subhalo annihilation.

Method:

Apply a series of '*filters*' based on expected DM signal properties.

Most common filters used:

- 1. Associations
- 2. Variability
- 3. Latitude
- 4. Multiwavelength emission
- 5. Spectrum
- 6. Extension

Dark satellites' search in Fermi-LAT catalogs

Around 1/3 of sources in LAT catalogs are unidentified (~1000 unIDs in the 3FGL) Exciting possibility: some of them may be subhalos annihilating to gammas!

Objective: to build a list of potential DM subhalo candidates by identifying those unIDs compatible with DM subhalo annihilation.

Method:

Apply a series of '*filters*' based on expected DM signal properties.

Results:

- 1. A few VIP candidates → dedicated LAT analyses, IACT follow-ups...
- 2. A few more subhalo candidates (yet uncertain) \rightarrow set DM constraints
- 3. No unIDs compatible with DM? \rightarrow best achievable constraints

DM constraints from LAT unIDs?

N-body simulations \rightarrow dark satellites' J-factors and spatial properties.

LAT sensitivity to DM annihilation \rightarrow number of detectable subhalos.

Number of predicted detectable subhalos VS. number of remaining unIDs in catalogs.

The less DM candidates left in catalogs the better the DM constraints.

(Some) past work

Mirabal+16

Also: Tasitsiomi&Olinto o2; Pieri+o5; Kuhlen+o7; Springel+o8; Anderson+1o; Belikov+12; Ackermann+12; Berlin&Hooper+13; Hooper+16; Schoonenberg+16

- Search in the most recent LAT catalogs (3FGL, 2FHL, 3FHL)
- Careful unIDs 'filtering' work.
- Precise characterization of LAT sensitivity to DM annihilation.
- Best knowledge of subhalos' structural properties (MASC&Prada14, Moliné+17)
- Repopulation of VL-II N-body simulation below its resolution limit.

Most realistic constraints

Maximum potential (1 subhalo)

Some OPEN ISSUES

- Subhalo mass function.
- Subhalo structural properties.
- Subhalo survival (to tidal stripping; baryons; dynamical friction).
- Role of baryons on:
 - Subhalo abundance.
 - Subhalo structure.
- Dependence of all the above on distance to host halo center and mass.

The role of DM halo substructure in (indirect) DM searches

Both dwarfs and dark satellites are highly DM-dominated systems

\rightarrow GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

 \rightarrow "SUBSTRUCTURE BOOSTS"

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) \ dm$$

DM annihilation signal is proportional to the DM density squared
 → Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

- Integration down to the minimum predicted halo mass ~10⁻⁶ Msun.
- Current Milky Way-size simulations "only" resolve subhalos down to ~10⁵ Msun.

→ Extrapolations below the mass resolution needed.

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

MASC & Prada, MNRAS, 442, 2271 (2014) [astro-ph/1312.1729]

SCP14 substructure boosts

<u>Warning</u>: they all assume that both main halos and subhalos possess similar structural properties...

What does ACDM tell us about c(M) at the smallest scales?

- Natal concentrations are mainly set by the halo formation time.
- Given the CDM power spectrum , the smallest halos typically collapse *nearly* at the same time:
 - ightarrow Concentration is nearly the same for the smallest halos over a wide range of masses.
 - → power-law c(M) extrapolations not correct!

Subhalo concentrations from VL-II and ELVIS

106 3 10⁵ 104 Clear increase of subhalo 10³ 10 concentration V_{max} [km/s] as we approach the host halo center! 107 **ELVIS** 10⁶ 10⁵ 3

(Improved) subhalo boost model

- 1. Make use of our better knowledge on subhalo concentrations.
- 2. Tidal stripping included (Roche criterium).

[Agrees also with Bartels & Ando (2015) and Zavala & Afshordi (2015)]

Substructure modifies the annihilation flux profile

[MASC, Cannoni, Zandanel et al., JCAP 12 (2011) 011]

Annihilation signal becomes *more spatially extended*.

Some remarks

- Halo substructure is an unavoidable prediction of ΛCDM.
 - Most massive subhalos (dwarf galaxies) the best targets for indirect DM detection.
 - Less massive subhalos, with no optical counterparts, can be used to set very competitive constraints.
 - Subhalos can significantly *boost* the annihilation signal from halos and alter the signal spatial properties.

DM halo substructure CRITICAL for current and future gamma-ray DM search strategies.

Thanks!

Miguel A. Sánchez-Conde

miguel.sanchezconde@uam.es www.miguelsanchezconde.com

Daniel López / IAC

ADDITIONAL MATERIAL

Future of dark satellites' searches with gamma rays

E-ASTROGAM

Future MeV/sub-GeV missions

Future of dark satellites' searches with gamma rays

- Higher resolution DM-only and hydro simulations to shed light on subhalo survival, structural properties, etc.
- New gamma-ray catalogs (e.g., upcoming 4FGL)
- More refined spectral and spatial unID 'filters'
- Possible follow up of VIP candidates with IACTs

DM halo substructure CRITICAL for current and future gamma-ray DM search strategies.

Census of dwarfs (circa 2014)

[A. Drlica-Wagner, Berolo, Sep 17]

Measuring the DM content in dwarfs

- Determined spectroscopically from stellar velocity dispersions:
 - O(100) in classical dwarfs.
 - O(10) in ultra-faint dwarfs.
- Dispersion profiles generally remain flat up to large radii
 → highly DM dominated

"J-factor" of MW dwarf satellite galaxies inferred from:

- l.o.s. velocity dispersion profiles
- DM density profile (e.g. NFW)

MAGIC + Fermi-LAT combined limits

MAGIC: Segue 1, 158 h Fermi-LAT: 15 dwarfs, 6 yr

Combined likelihood, global analysis

Most constraining results between 10 GeV to 100 TeV

Same method can be easily used to **combine** results from other experiments, targets, messengers

Ahnen+16, The MAGiC and Fermi-LAT collaborations; [1601.06590]

Recent discovery of new satellites

- Search in the most recent LAT catalogs (3FGL, 2FHL, 3FHL)
- Careful unID 'filtering' work.

DM subhalo search 'filters':

1.	Associations
2.	Variability
3.	Latitude
4.	Machine learning
5.	Multiwavelength emission
6.	Complex regions

(No spectral information used for the moment.)

Importance of unIDs "filtering"

- <σv> proportional to J-factor
 → less unIDs means better constraints
- Exponential rise in constraining power below ~20% of sources in every catalog
- 20% = 202 sources in 3FGL, 10 in 2FHL and 35 in 3FHL
- From these numbers down, every source we remove has a large impact

Preliminary results:

	Original	Result
2FHL	48	4
3FHL	177	24
3FGL	1010	16

- Search in the most recent LAT catalogs (3FGL, 2FHL, 3FHL)
- Careful unID 'filtering' work.
- Careful characterization of LAT sensitivity to DM annihilation.

Dependence on WIMP mass, annihilation channel and latitude

- Search in the most recent LAT catalogs (3FGL, 2FHL, 3FHL)
- Careful unID 'filtering' work.
- Careful characterization of LAT sensitivity to DM annihilation.
- Best knowledge of subhalos' structural properties (MASC&Prada14, Moline, MASC+17)

- Search in the most recent LAT catalogs (3FGL, 2FHL, 3FHL)
- Careful unID 'filtering' work.
- Careful characterization of LAT sensitivity to DM annihilation.
- Best knowledge of subhalos' structural properties (MASC&Prada14, Moline, MASC+17)
- Repopulation of current N-body simulations to reach lower subhalo masses.

Aguirre-Santaella, MASC, et al., in prep.

Credit: J. Coronado-Blázquez

FAMOUS (EX-)CANDIDATES

- SFGL J2212.5+0703 (Bertoni+16) actually 2 sources
- 3FGL J1924.8-1034 (Xia+17) classified as AGN by machine learning
- 3FGL J1119.9-2204 (Hooper+17) seen with SWIFT
- 3FGL J0318.1+0252 (Hooper+17) seen with SWIFT

All 3FGL (low energy) sources

Credit: J. Coronado-Blázquez

SUBHALO SEARCHES:

- Subhalos may induce 'gaps' in stellar streams (Carlberg 12,15; Erkal+15, 16, 17)
- Statistical analysis of the distribution of stars can be used to 'detect' subhalos
- Probably not possible below ~one million solar masses.

Simulating Milky Way size halos

VIA LACTEA I – II - GHALO

Three MW-size halos with different cosmological parameters.

VLII (GHALO) over one (two) billion particles

Cusp profiles compatible with NFW.

AQUARIUS

Six MW halos with different resolutions.

AQ-A1 has over four billions particles.

Cusp profiles, but better modeled by Einasto.

z=0.0 (Diemand et al. 2008)

80 kpc

	Via Lactea II	Aquarius
$R_{ m vir}[m kpc]$	402	433
$M_h \left[M_\odot \right]$	1.93×10^{12}	2.5×10^{12}
$r_s [m kpc]$	21	20
$ ho_s [10^6 M_\odot { m kpc}^{-3}]$	8.1	2.8
$\mathcal{F}_0[M_\odot^{-1}]$	10^{-6}	3.6×10^{-6}
$ ho_a \left[M_{\odot} \ \mathrm{kpc}^{-3} ight]$	-	2840.3
$R_a[m kpc]$	85.5	199
$\langle ho_\odot angle [{ m GeV/cm}^3]$	0.42	0.57
$N_{ m sub}$	2.8×10^{16}	1.1×10^{15}
$M_{ m sub}^{ m tot}(< R_{ m vir}) \left[M_{\odot} ight]$	1.05×10^{12}	4.2×10^{11}
$f_{ m sub}^{ m tot}(< R_{ m vir})$	0.53	0.17

AG-A

(Springel et al. 2008)

OPEN ISSUES (I): Role of baryons

FIRE Hydrodynamics

Pure N-Body

No substructure within ~20 kpc with $V_{max} > 5$ km/s

OPEN ISSUES (II): Subhalo survival

Radial distribution of massive subhalos in hydro simulations do not match observations!

Van den Bosch+18; van den Bosch&Ogiya 18 [Also: Kazantzidis+04; Diemand+07; Peñarrubia+10]:

- Subhalo disruption is numerical in origin
- Bound remnant survives provided it is well resolved in the simulation.

→ What is the actual subhalo radial distribution?