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Set	of	observed	
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Maximum	Likelihood	technique	
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N

∑easier to work with logarithm: 



Maximum	Likelihood	Estimation	(MLE)	

•  Estimates	of															can	be	obtained	by	simultaneously	solving:		
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Θ̂ = θ̂ j{ }

∂lnL
∂θ j θ̂k{ }

= 0



Maximum	Likelihood	Estimation	(MLE)	

•  Estimates	of															can	be	obtained	by	simultaneously	solving:		

	
	
	

•  MLE	has	the	following	asymptotic	properties	(under	certain	regularity	
conditions)	:	
–  Consistency:		

–  Asymptotic	normality:		

–  Asymptotic	efficiency:			MLE	achieves	the	smallest	possible	uncertainty																																
																																															(the	so-called	Cramér	Raó	lower	bound)	
–  Invariance:																							The	MLE	estimator	of																	is		
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Θ̂ = θ̂ j{ }

∂lnL
∂θ j θ̂k{ }

= 0

limn→∞
Θ̂( ) =Θ0

Θ̂ ∼ N Θ0 , I Θ0( ){ }
−1⎛

⎝
⎜

⎞
⎠
⎟ I Θ̂( ) = ∂

2 lnL
∂θi∂θ j Θ=Θ̂

Fisher information matrix

f Θ0( ) f (Θ̂)



Maximum	Likelihood	Estimation	(MLE)	

•  2nd	derivative	of												is	related	to	the	uncertainty	of	the	estimate:		
	
one-parameter	case:		
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∂2 lnL
∂θ 2

Θ̂

= −
1
σ 2

lnL

lnL ~ exp −
Θ−Θ̂( )
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2σ 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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Example	1:		

Independent	measurements	of	flux	of	source	with	Gaussian	
uncertainties:		
	
Model:	constant	flux			F		!		
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P(xi | F ) =
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⎟
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2
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Example	2:		

Counting	experiment	(e.g.	gamma-rays):	Detector	detected	n	events		
	
Model:	Possonian	process	with	mean	of	λ:		!		
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P(n |λ) =
e−λ ⋅λ n

n!

lnL = − n lnλ −λ − lnn!
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∂F
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λ
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Hypothesis	Testing	

For	a	model	with	N	parameters	and	the	sample	size															:		
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2 lnL Θ̂( )− lnL Θ0( )( ) ~ χ 2 N( ) Wilk’s theorem


n→∞



Hypothesis	Testing	

For	a	model	with	N	parameters	and	the	sample	size															:		

	

Caveats:			
– The	model	must	describe	the	data	correctly	!!	
	

	
17/1/19 Dark Matter Workshop Barcelona, 16-18 Jan. 2018 24

2 lnL Θ̂( )− lnL Θ0( )( ) ~ χ 2 N( ) Wilk’s theorem


n→∞



Hypothesis	Testing	

For	a	model	with	N	parameters	and	the	sample	size															:		

	

Caveats:			
– The	model	must	describe	the	data	correctly	!!	
– If	the	MLE	behaves	asymptotically,	it	is	well-behaved	(i.e.	
Wilk’s	theorem	applies),	otherwise	not!		
– Sometimes,					can	be	large,	but	asymptotic	behaviour	not	
yet	reached	because	of	a	high	weight	given	only	to	a	
small	sub-sample	of	few	events.		
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TS = 2 lnL Θ̂( )− lnL Θ0( )( ) ~ χ 2 N( ) Wilk’s theorem


n→∞

n
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applies),	otherwise	not!		

	

	
17/1/19 Dark Matter Workshop Barcelona, 16-18 Jan. 2018 26

2 lnL Θ̂( )− lnL Θ0( )( ) ~ χ 2 N( ) Wilk’s theorem


n→∞

from: 
Leyre Nogués,
PhD thesis, 
Univ. de Zaragoza, 
2018 



Hypothesis	Testing	

Normally,	we	do	not	know								(that’s	why	we	take	a	measurement!)				
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Hypothesis	Testing	

Normally,	we	do	not	know								(that’s	why	we	take	a	measurement!)	
	

BUT:					
We	make	an	assumption	about	the	model	(the	null	
hypothesis),	in	which	the	parameters	have	some	presumed	
“true”	values.		
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Hypothesis	Testing	

Normally,	we	do	not	know								(that’s	why	we	take	a	measurement!)	
	

BUT:					
We	make	an	assumption	about	the	model	(the	null	
hypothesis),	in	which	the	parameters	have	some	presumed	
“true”	values.		
	
Nobody	can	tell	if	the	null	hypothesis	is	right	!	
		(except	in	MC	simulated	data	samples)	
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hypothesis),	in	which	the	parameters	have	some	presumed	
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Compute																		for	the	null	hypothesis	(instead	of	the	true	values)	
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Θ0

lnL Θ0( )



Hypothesis	Testing	
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				Hope	to	show	that																																				is	so	large	that	it	is			
				improbable	from					
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Θ0

lnL Θ0( )

2 lnL Θ̂( )− lnL Θ0( )( )
χ 2



Hypothesis	Testing	

Normally,	we	do	not	know								(that’s	why	we	take	a	measurement!)	
	

BUT:					
We	make	an	assumption	about	the	model	(the	null	
hypothesis),	in	which	the	parameters	have	some	presumed	
“true”	values.		
	
Compute																		for	the	null	hypothesis	(instead	of	the	true	values)	

	
				Hope	to	show	that																																				is	so	large	that	it	is			
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Hypothesis	Testing	

Normally,	we	do	not	know								(that’s	why	we	take	a	measurement!)	
	

BUT:					
We	make	an	assumption	about	the	model	(the	null	
hypothesis),	in	which	the	parameters	have	some	presumed	
“true”	values.		
	
Compute																		for	the	null	hypothesis	(instead	of	the	true	values)	

	
				Hope	to	show	that																																				is	so	large	that	it	is			
				improbable	from											à	hence	reject	the	null	hypothesis	
																																																			with										signficance	
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Θ0

lnL Θ0( )

TS = 2 lnL Θ̂( )− lnL Θ0( )( )
χ 2

TS



Profile	likelihood	and	treatment	of	nuisance	
parameters	

•  Often	we	are	either	concerned	only	with	the	one	parameter	(of	
interest)	λ,	and	treat	the	rest	of	other	free	(nuisance)	parameters	ν	
separately:			

•  Produce	“profile	log-likelihood”	curve,	a	function	of	only	one	
parameter	(at	a	time),	maximized	over	all	others.		

•  Wilk’s	theorem	say	that	this	“profile	log-likelihood”	curve	should	
behave	as	a		

17/1/19 Dark Matter Workshop Barcelona, 16-18 Jan. 2018 34

TS = 2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( ) ~ χ 2 (1)

Θ = λ,ν{ }

Set of parameters that maximize
 the likelihood simultaneously



Profile	likelihood	and	treatment	of	nuisance	
parameters	

•  Often	we	are	either	concerned	only	with	the	one	parameter	(of	
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TS = 2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( )

Θ = λ,ν{ }

Given value of the parameter of interest 
to be tested



Profile	likelihood	and	treatment	of	nuisance	
parameters	
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TS = 2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( )

Θ = λ,ν{ }

The set of nuisance parameters that 
maximize the likelihood (simultaneously) for the given λ 
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•  Often	we	are	either	concerned	only	with	the	one	parameter	(of	
interest)	λ,	and	treat	the	rest	of	other	free	(nuisance)	parameters	ν	
separately:			

•  Produce	“profile	log-likelihood”	curve,	a	function	of	only	one	
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TS = 2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( )

Θ = λ,ν{ }

The set of nuisance parameters that 
maximize the likelihood (simultaneously) for the given λ 

Caveat: 
only true for (any) fixed set of nuisance parameters!



Confidence	intervals	

•  Find	two	values	of	λ	where	TS	decreases	by	1	w.r.t.	its	maximum:		
	-	yields	a	2-sided	1σ	confidence	interval	(68%	probability)	

						-	is	usually	asymmetric	!	
	

•  Normally	can	derive	any	confidence	interval	of	N-σ,	where	TS	
decreases	by	N2	w.r.t.	its	maximum.		

	
•  If	Wilk’s	theorem	holds	(i.e.	the	likelihood	is	well-behaved),	the	
range	of	parameters	enclosed	by	the	(TS	– N2)	contains	the	true	
parameter	λ	in	a	part	of	cases	which	correspond	to	an	integrated	
normal	distribution	in	a	range	of	(μ-Nσ,	μ+Nσ),	e.g.	if	the	same	
experiment	was	repeated	many	times.			
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Confidence	intervals	

•  Finding	points	where	TS	decreases	by	1	w.r.t.	its	maximum:		
	 	 	-	yields	a	2-sided	1σ	confidence	interval	(68%)	

																		-	is	usually	asymmetric	!	
	

•  Normally	can	derive	any	confidence	interval	of	N-σ,	where	TS	decreases	
by	N2	w.r.t.	its	maximum.		

	
•  If	Wilk’s	theorem	holds	(i.e.	the	likelihood	is	well-behaved),	the	range	of	
parameters	enclosed	by	the	(TS	–	N2)	contains	the	true	parameter	λ	in	a	
part	of	cases	which	correspond	to	an	integrated	normal	distribution	in	a	
range	of	(μ-Nσ,	μ+Nσ),	e.g.	if	the	same	experiment	was	repeated	many	
times.			

•  If	the	previous	relation	hold,	the	likelihood	is	said	to	have	the	correct	
coverage.		
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•  Finding	points	where	TS	decreases	by	1	w.r.t.	its	maximum:		
	 	 	-	yields	a	2-sided	1σ	confidence	interval	(68%)	

																		-	is	usually	asymmetric	!	
	

•  Normally	can	derive	any	confidence	interval	of	N-σ,	where	TS	decreases	
by	N2	w.r.t.	its	maximum.		

	
•  If	Wilk’s	theorem	holds	(i.e.	the	likelihood	is	well-behaved),	the	range	of	
parameters	enclosed	by	the	(TS	–	N2)	contains	the	true	parameter	λ	in	a	
part	of	cases	which	correspond	to	an	integrated	normal	distribution	in	a	
range	of	(μ-Nσ,	μ+Nσ),	e.g.	if	the	same	experiment	was	repeated	many	
times.			

•  If	the	previous	relation	hold,	the	likelihood	is	said	to	have	the	correct	
coverage.		
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The relation below can (and should!) be 
checked with MC simulations !



Confidence	limits	
(see	Rolke	et	al.,	NIM	A,	551,	493	(2005))	
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In two-sided interval search for two points where  
 

For one-sided interval, we need to find single such a  
point for which   

E.g. for CL=0.95 we search for 
 

2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( ) =N

N 0,1( ) = (1−CL) / 2
0.5

x

∫

2 lnL λ, ˆ̂ν λ( )( )− lnL λ̂,ν̂( )( ) =2.71



	Good	practices	

•  Define	all	the	parameters	of	an	analysis	before	looking	at	the	data.		
– Data	selection	“cuts”	
– Thresholds	for	claiming	detection.		
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	Good	practices	

•  Define	all	the	parameters	of	an	analysis	before	looking	at	the	data.		
– Data	selection	“cuts”	
– Thresholds	for	claiming	detection.		
	

•  It	is	tempting	to	adjust	the	analysis	procedure	to	enhance	some	
small	signal,	BUT	THIS	WILL	DESTROY	(artificially	enhance)	ANY	
DETECTION	SIGNIFICANCE!		
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	Good	practices	

•  Define	all	the	parameters	of	an	analysis	before	looking	at	the	data.		
– Data	selection	“cuts”	
– Thresholds	for	claiming	detection.		
	

•  It	is	tempting	to	adjust	the	analysis	procedure	to	enhance	some	
small	signal,	BUT	THIS	WILL	DESTROY	(artificially	enhance)	ANY	
DETECTION	SIGNIFICANCE!		

•  Best	practice	is	to	do	a	blind	analysis.		
•  Use	MC	or	test	(Crab	Nebula)	data	to	refine	analysis	in	advance.		
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	Good	practices	

•  Define	all	the	parameters	of	an	analysis	before	looking	at	the	data.		
– Data	selection	“cuts”	
– Thresholds	for	claiming	detection.		
	

•  It	is	tempting	to	adjust	the	analysis	procedure	to	enhance	some	
small	signal,	BUT	THIS	WILL	DESTROY	(artificially	enhance)	ANY	
DETECTION	SIGNIFICANCE!		

•  Best	practice	is	to	do	a	blind	analysis.		
•  Use	MC	or	test	(Crab	Nebula)	data	to	refine	analysis	in	advance.		

•  Use	extensive	MC	simulations	to	test	the	behaviour	of	your	
(profile)	likelihood,	particularly	whether	it	converges	correctly	and	
whether	it	has	the	desired	coverage.	
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	Good	practices	
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	Good	practices	
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And	now,	let’s	move	to	the	real	stuff…	
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