Particle Physics at Colliders and in the High Energy Universe

14. New Physics at the Energy Frontier

28.01.2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Dr. Frank Simon Dr. Bela Majorovits

Overview

- Shortcomings of the Standard Model and Motivations for New Physics
- Features of Grand Unified Theories
- Supersymmetry
- LHC Searches for
 - SUSY
 - Dark Matter
 - Extra Dimensions
- A Broad Look at Current LHC Limits

Introduction: Beyond the Standard Model at LHC

- A significant fraction of all analyses performed at the LHC search for phenomena beyond the standard model - typically classified in:
 - **Supersymmetry**: Searching for indications for a concrete, popular and wellmotivated extension of the Standard Model
 - Exotics: More generic new phenomena searches often also motivated by theoretical ideas, but also very general searches for deviations from Standard Model expectations

Introduction: Beyond the Standard Model at LHC

- A significant fraction of all analyses performed at the LHC search for phenomena beyond the standard model - typically classified in:
 - **Supersymmetry**: Searching for indications for a concrete, popular and wellmotivated extension of the Standard Model
 - Exotics: More generic new phenomena searches often also motivated by theoretical ideas, but also very general searches for deviations from Standard Model expectations

Impossible to cover this in a single lecture - here:

A focus on Supersymmetry as an example to illustrate motivations and properties of BSM theories

A few examples of other phenomena and search strategies

Reminder: Limitations of the Standard Model

- The Standard Model with:
 - Fundamental fermions (3 pairs of quarks, 3 pairs of leptons)
 - Fundamental interactions through gauge fields, manifested through
 - W, Z, γ (electroweak SU(2) x U(1))
 - gluons (strong SU(3))

successfully describes all HEP experiments and observations.

BUT:

- it has conceptual problems
- it is incomplete: Fails to describe astrophysical / cosmological observations.

Limitations: Conceptual Problems

- Too many free parameters: ~18 masses, couplings, mixing angles
- No unification of electroweak and strong interaction
- No inclusion of quantum gravity
- Family replication: Why 3 families of fundamental fermions?
- Hierarchy problem: "Fine tuning" of precise cancellation of radiative corrections
- Why 1/3 charges of quarks or: What ensures exactly equal charge of protons and electrons?

possible solution

GUT; E ~ 10¹⁶ GeV TOE; E ~ 10¹⁹ GeV

SUSY, Extra dimensions, ... E ~ 10³ GeV

GUT; E ~ 10¹⁶ GeV

Limitations: Observations

Neutrino masses

Ideas Beyond: Grand Unified Theories

 The simplest symmetry that contains U(1), SU(2) and SU(3): SU(5) (Georgi, Glashow 1974)

Ideas Beyond: Grand Unified Theories

The particle structure in SU(5) GUT:

 Multiplets of (known) leptons and quarks, which can be transformed by the exchange of new heavy bosons ("leptoquarks") X, Y with -1/3 and -1/4 charge

a direct consequence: Proton decay via $p \rightarrow \pi^0 e^+$

already excluded by SuperKamiokande: Standard SUSY-GUT excluded.

more next week!

Ideas Beyond: Grand Unified Theories

- Electric charge is one of the generators of SU(5)
 - Quantisation of charge follows from exchange rules
 - Sum of all charges in eac' fermion multiplet = 0
 (e.g. each family: neutrino, lepton, 3 x up-type quark, 3 x down-type quark)
 - => Explains 1/3 charges of quarks by existence of 3 colors
 - => Guarantees equal charge of proton and electron

Additional consequences:

- Small, but finite neutrino mass
- Existence of heavy magnetic monopoles

Coupling Constants: Unification?

• For GUTs: unification of running coupling constants?

$$\begin{aligned} a_1(M_X) &= a_2(M_X) = a_3(M_X) \quad \text{with:} \quad a_1 = 8 \; a_{em}/3 = 8(e^2/4\pi)/3 \; ; \\ a_2 &= g^2/4\pi; \; (g = e \; / \; sin\theta_w) \\ a_3 &= a_s \\ a_3 &= a_s \\ a_3 &= a_s \\ n_c &= 0, 2, 3 \; \text{ für U(1), SU(2), SU(3),} \end{aligned} ; \quad \text{mit } -\beta_0 = \frac{11N_c - 4N_f}{12\pi} \end{aligned}$$

 $N_f = 3$ (Number of fermion generations)

Coupling Constants: Unification?

• For GUTs: unification of running coupling constants?

$$\begin{aligned} a_1(M_X) &= a_2(M_X) = a_3(M_X) \quad \text{with:} \quad a_1 = 8 \ a_{em}/3 = 8(e^2/4\pi)/3 \ ; \\ a_2 &= g^2/4\pi; \quad (g = e \ / \ sin\theta_w) \\ a_3 &= a_s \\ a_3 &= a_s \\ n_c &= 0, 2, 3 \ \text{für U(1), SU(2), SU(3),} \\ N_f &= 3 \ (\text{Number of fermion generations}) \end{aligned}$$

additional SUSY particles in loops:

The Hierarchy Problem: A Closer Look

- The problem: Two mass scales: The Planck scale (~10¹⁹ GeV) and the electroweak scale (~10² GeV) separated by 17 orders of magnitude!
 - The consequence: Gravitation is much weaker than all other interactions
 - In the Standard Model: Higgs-Mass of 125 GeV: How is this stabilized?

The Hierarchy Problem: Quantum Corrections

Contribution of fermion loops

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{\rm UV}^2 + \dots$$

contribution of boson loops

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln(\Lambda_{\rm UV}/m_S) + \dots \right]$$

The Hierarchy Problem: Quantum Corrections

In the SM: Largest contribution from the top quark: Strongest coupling to the Higgs field, $\lambda_f \sim 1$

The Hierarchy Problem: Quantum Corrections

Also so far unknown, heavy particles contribute, the heaviest particle which couples to the Higgs field dominates!

Requires unnatural fine tuning to save a small Higgs mass

A popular Idea: Supersymmetry

• The strategy for a solution is suggested by the correction terms:

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{\rm UV}^2 + \dots \qquad \Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln(\Lambda_{\rm UV}/m_S) + \dots \right]$$

Contributions of fermions and bosons have opposite sign!

- Cancelation of these contributions is automatic, if there is a symmetry between bosons and fermions, a so-called *Supersymmetry*
- A SUSY gauge transformation transforms bosons into fermions and vice versa: $Q|Boson\rangle = |Fermion\rangle, \qquad Q|Fermion\rangle = |Boson\rangle$

A popular Idea: Supersymmetry

• The strategy for a solution is suggested by the correction terms:

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{\rm UV}^2 + \dots \qquad \Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda_{\rm UV}^2 - 2m_S^2 \ln(\Lambda_{\rm UV}/m_S) + \dots \right]$$

Contributions of fermions and bosons have opposite sign!

- Cancelation of these contributions is automatic, if there is a symmetry between bosons and fermions, a so-called *Supersymmetry*
- A SUSY gauge transformation transforms bosons into fermions and vice versa: $Q|Boson\rangle = |Fermion\rangle, \qquad Q|Fermion\rangle = |Boson\rangle$
 - Consequences of Supersymmetry:
 - Each fermion in the SM has a bosonic "superpartner" with 1/2 different spin, analoguous for every boson
 - The partners are arranged in so-called "super-multipletts"
 - For an exact symmetry, the masses of particles and their superpartners are identical

Supersymmetry: Particles & Forces

Each SM particle gets a supersymmetric partner ullet

perial College ndon

Higgs structure gets more complex: 2 complex doublets, results in 5 physical Higgs fields - Gauginos and Higgsinos mix to form **Charginos and Neutralinos**

WS 18/19, 14: New Physics at the Energy

Supersymmetry: Particles & Forces

Each SM particle gets a supersymmetric partner ullet

Teilchen	Spin	S-Teilchen	Spin
Onark Q	1/2	Squark Q	0
don Lepton l	1/2	Slepton <i>l</i>	0
Photon y	1	Photino $\tilde{\gamma}$	1/2
Gluon g	1	Gluino	1/2
W [±]	1	Wino W [±]	1/.2
Z^0	1	Zino Z^0	1/2

Higgs structure gets more complex: 2 complex doublets, results in 5 physical Higgs fields - Gauginos and Higgsinos mix to form **Charginos and Neutralinos**

WS 18/19, 14: New Physics at the Energy

Frank Simon (fsimon@mpp.mpg.de)

14

Supersymmetry: Models & Phenomenology

- 128 free parameters to describe masses and couplings of all SUSY particles
 - reduced to a few by adding additional assumptions on breaking mechanism etc.
- New conserved quantity: *R Parity* a multiplicative quantity
 - $R = (-1)^{3(B-L)+2S}$ (B/L: baryon, lepton number, S: spin)
 - R = 1 for "normal" particles, = -1 for SUSY particles

R parity conservation implies that the lightest SUSY particle (LSP) has to be stable => a good Dark Matter candidate!

- N.B.: Also models with
- R Parity violation exist...

Supersymmetry: Models & Phenomenology

- 128 free parameters to describe masses and couplings of all SUSY particles
 - reduced to a few by adding additional assumptions on breaking mechanism etc.
- New conserved quantity: *R Parity* a multiplicative quantity
 - $R = (-1)^{3(B-L)+2S}$ (B/L: baryon, lepton number, S: spin)
 - R = 1 for "normal" particles, = -1 for SUSY particles

R parity conservation implies that the lightest SUSY particle (LSP) has to be stable => a good Dark Matter candidate!

Interaction of SUSY Particles

- SUSY particles interact just as SM particles according to their quantum numbers
 - Right-sfermions (handedness here refers to the SM partners, since the sfermions have spin 0) do not carry weak isospin and therefore do not couple to W bosons
- Coupling to SUSY gauge bosons:

• Depends on spectrum: Ordering of masses - in general:

 $\frac{\chi_{a}}{\chi_{i}^{o}/\chi_{i}^{o}} \stackrel{\mathcal{R}}{=} \frac{\chi_{a}}{\chi_{i}^{o}/\chi_{i}^{o}} \stackrel{\mathcal{R}}{=} \frac{\chi_{i}}{\chi_{i}^{o}/\chi_{i}^{o}} \stackrel{\mathcal{R$

Depends on spectrum: Ordering of masses - in general:

1 also: via H, F, 6° H */-If y? Calso to Xthen changing from VE> lt- / gerg' ก/สุ

Depends on spectrum: Ordering of masses - in general:

also: via H, F, 6°, 10 H +1-F also to X^{H-} when changing from VE> l^H-/qE7q' /~~ F + of of + 2% 2*-decay chains χ^{0}_{2} Θ XO

• Depends on spectrum: Ordering of masses - in general:

also: via H, F, 5° H+1-F also to X^{H-} when changing from VE> l^H-/qE7q' õ/7 + of of + 2/2+- χ^{o}_{2} decay chains For R-parity conservation: Find particles always include X1 (LSP)

Experimental Searches for SUSY - Principles

Based on typical production and decay scenarios

Typical signatures:

- several high-energy jets
- several high-energy leptons
- missing transverse energy

if R-parity is not conserved: missing energy replaced by endpoints in momentum distributions giving mass differences in decay chains

Experimental Searches for SUSY - Principles

Based on typical production and decay scenarios

Typical signatures:

- several high-energy jets
- several high-energy leptons
- missing transverse energy

if R-parity is not conserved: missing energy replaced by endpoints in momentum distributions giving mass differences in decay chains

 Analysis typically performed in "simplified models": Generic features - limits expressed for assumed couplings, masses and particle types, without concrete SUSY parameter assumptions

Interpretation of Results - Simplified Models

Ap. Dg > ± t

Production of SUSY Particles: General Features

 Cross sections (and with that the mass reach at the LHC) depend strongly on the production mechanism: Highest reach via the strong interaction: New particles carrying color charge - gluinos, squarks

Experimental Searches for SUSY - Requirements

- Key experimental capabilities (and uncertainties) for new physics searches:
 - Jet and lepton reconstruction
 - Hermetic coverage of the events
 - Control of backgrounds an pile-up
 - reconstruction and resolution of missing (transverse) energy

Experimental Searches for SUSY - Examples

 Search for strongly interacting SUSY: Characterized by multi-jet final states from cascade decays

 $\Delta_p \cdot \Delta_q \ge \pm t$

Particle Physics at Colliders and in the High Energy Universe: WS 18/19, 14: New Physics at the Energy Frontier

h

Experimental Searches for SUSY - Examples

Experimental Searches for SUSY - Examples

 Exclusion curves for a number of different analyses - as a function of gluino and neutralino (LSP) mass:

Limits beyond 2 TeV for some scenarios for gluinos

Related to SUSY searches - but also more general

From cosmology: Expect some interaction between Dark Matter and SM particles - thermal equilibrium in early universe, followed by freeze-out

Related to SUSY searches - but also more general

From cosmology: Expect some interaction between Dark Matter and SM particles - thermal equilibrium in early universe, followed by freeze-out

> Could produce DM at colliders: 3 different search approaches

Related to SUSY searches - but also more general

Related to SUSY searches - but also more general

Related to SUSY searches - but also more general

Dark Matter / SUSY Searches: Monojets

 Mono-jet (or monophoton) signatures:
 Detecting the production of invisible
 final states through
 initial state radiation

 Δ_{h} . $\Delta_{g} \geq \pm t$

Searching for Dark Matter at Colliders - Mediators

 A search for new force carriers - looking for high-mass resonances

Jet p_T 3.8 TeV, di-jet invariant mass 8.12 TeV

Searching for Dark Matter at Colliders - Mediators

 A search for new force carriers - looking for high-mass resonances

Jet p_T 3.8 TeV, di-jet invariant mass 8.12 TeV

Particle Physics at Colliders and in the High Energy Universe: WS 18/19, 14: New Physics at the Energy Frontier

8 9

m_{ii} [TeV]

6

5

Dark Matter Searches - Limits

• Limits of collider searches are model-dependent: Assumptions on couplings between DM particles, mediators and SM particles, form of interaction, ...

Dark Matter Searches - Limits

• Limits of collider searches are model-dependent: Assumptions on couplings between DM particles, mediators and SM particles, form of interaction, ...

Extra Space Dimensions

- An approach to solve the hierarchy problem from the side of gravity: • Lowering the Planck scale
 - Naively: The Planck scale is the mass that is required for an elementary particle such that its gravity is "strong" (comparable to other forces):

 $m_p = \sqrt{\frac{\hbar c}{G}} \sim 1 \times 10^{19} GeV$ assuming 3 space dimensions

Extra Space Dimensions

• The idea: Extra dimensions are "compactified" - only relevant at small scales, and only visible to gravity

Extra Space Dimensions

 The idea: Extra dimensions are "compactified" - only relevant at small scales, and only visible to gravity

effective lowering of Planck mass by R^{-n/2}:

n: number of extra dimensions

R: radius

For large n and large R smaller m_P , can reach TeV scale for nm - scale extra dimensions with n > 3

Extra Dimensions: Experimental Signatures

- Excitations in extra dimensions: High-mass resonances
- Creation and decay of micro Black Holes: High-energy many-particle final states

Extra Dimensions: Experimental Signatures

- Excitations in extra dimensions: High-mass resonances
- Creation and decay of micro Black Holes: High-energy many-particle final states

Generic signatures for a number of "exotic" New Physics scenarios

Black Hole Search: One Example

- Looking for an excess of signals in high jet multiplicities (here 8 or more jets)
- High total transverse Energy (H_T)

JHEP 03, 026 (2016)

Black Hole Search: One Example

 $\Delta_{p} \cdot \Delta_{q} \ge \frac{1}{2} t$

THE SMALLEST BLACK HOLE YET DISCOVERED BY HUMANS LOCATED AT BINARY XTE J1650-500.

PPRIGHT©2008 J.D. "Illind" Frazor HTTP://WWW.USERFRIENDLY.ORG/

Particle Physics at Colliders and in the High Energy Universe: WS 18/19, 14: New Physics at the Energy Frontier

Ap. Dg > 1t

Particle Physics at Colliders and in the High Energy Universe: WS 18/19, 14: New Physics at the Energy Frontier

Ap. Dg > 1t

Periods of Excitement

 Observed excess around 750 GeV in *γγ* invariant mass - a narrow resonance? also seen in similar (but not identical) mass range by CMS

2.1 σ global (3.9 σ local) significance

Periods of Excitement

 Observed excess around 750 GeV in γγ invariant mass - a narrow resonance? also seen in similar (but not identical) mass range by CMS

A Broader View: Status of SUSY Searches at LHC

Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫L dt[fl	D ⁻¹]	Ма	ss limit		$\sqrt{s}=7,3$	B TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	\tilde{q} [2x, 8x Degen.] \tilde{q} [1x, 8x Degen.]	н н	0.43	0.9 0.71	1.55	m(∛10)<100 GeV m(ỹ)-m(∛10)=5 GeV	1712.02332 1711.03301
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0	2-6 jets	Yes	36.1	250 250			Forbidden	2.0 0.95-1.6	$m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{\chi}_1^0)$ =900 GeV	1712.02332 1712.02332
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	- Yes	36.1 36.1	ĝ ĝ				1.85 1.2	$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> ,μ	7-11 jets 4 jets	Yes	36.1 36.1	õg õg			0.98	1.8	m($ ilde{\chi}_1^0$) <400 GeV m($ ilde{g}$)-m($ ilde{\chi}_1^0$)=200 GeV	1708.02794 1706.03731
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ 3 <i>e</i> ,μ	3 <i>b</i> 4 jets	Yes	36.1 36.1	200 Jun				2.0 1.25	m($ ilde{k}_1^0$)<200 GeV m($ ilde{g}$)-m($ ilde{k}_1^0$)=300 GeV	1711.01901 1706.03731
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{ccc} ilde{b}_1 & & \ ilde{b}_1 & & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7	m(ā	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}1\\ m(\tilde{\chi}_{1}^{0}){=}300~GeV,~BR(b\tilde{\chi}_{1}^{0}){=}BR(t\tilde{\chi}_{1}^{\pm}){=}0.5\\ 1){=}200~GeV,~m(\tilde{\chi}_{1}^{\pm}){=}300~GeV,~BR(t\tilde{\chi}_{1}^{\pm}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
$\tilde{b}_1 \tilde{b}_1, \tilde{t}_1 \tilde{t}_1, M_2 = 2 \times M_1$		Multiple Multiple		36.1 36.1	$egin{array}{ccc} ilde{t}_1 & & \ ilde{t}_1 & & \ ilde{Forbidder} \end{array}$	1		0.7		$\mathfrak{m}(ilde{\chi}_1^0)$ =60 GeV $\mathfrak{m}(ilde{\chi}_1^0)$ =200 GeV	1709.04183, 1711.11520, 1708.0324 1709.04183, 1711.11520, 1708.0324
$ \begin{array}{c} \widetilde{\mathbf{v}} \\ \widetilde{\mathbf{r}}_1 \widetilde{\mathbf{r}}_1, \widetilde{\mathbf{r}}_1 \rightarrow W b \widetilde{\mathbf{\chi}}_1^0 \text{ or } t \widetilde{\mathbf{\chi}}_1^0 \\ \widetilde{\mathbf{r}}_1 \widetilde{\mathbf{r}}_1, \ \widetilde{H} \ LSP \end{array} $	0-2 <i>e</i> , <i>µ</i> (0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	$ ilde{t}_1$ $ ilde{t}_1$ $ ilde{t}_1$	Forbidden		1.0 0.4-0.9 0.6-0.8	m(m($m(\bar{\chi}_{1}^{0})=1 \text{ GeV}$ $\tilde{\chi}_{1}^{0})=150 \text{ GeV}, m(\bar{\chi}_{1}^{+})-m(\bar{\chi}_{1}^{0})=5 \text{ GeV}, \bar{r}_{1} \approx \bar{r}_{L}$ $\tilde{r}_{1}^{0})=300 \text{ GeV}, m(\bar{\chi}_{1}^{+})-m(\bar{\chi}_{1}^{0})=5 \text{ GeV}, \bar{r}_{1} \approx \bar{r}_{L}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
$ \vec{\tilde{t}}_{1} \vec{\tilde{t}}_{1}, \text{ Well-Tempered LSP} \tilde{\tilde{t}}_{1} \vec{\tilde{t}}_{1}, \vec{\tilde{t}}_{1} \rightarrow c \tilde{\tilde{x}}_{1}^{0} / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\tilde{x}}_{1}^{0} $	0	Multiple 2c	Yes	36.1 36.1	\tilde{t}_1 \tilde{t}_1 \tilde{t}_1		0.46	0.48-0.84 0.85	m(i	$ \begin{array}{c} \sum_{i=1}^{n} (\tilde{\chi}_{1}^{0}) = 150 \text{ GeV}, \ m(\tilde{\chi}_{1}^{1}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}, \ \tilde{\iota}_{1} \approx \tilde{\iota}_{L} \\ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} \\ m(\tilde{\iota}_{1},\tilde{c}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV} \end{array} $	1709.04183, 1711.11520 1805.01649 1805.01649
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	0 1-2 <i>e</i> ,μ	mono-jet 4 b	Yes Yes	36.1 36.1	t_1 \tilde{t}_2		0.43	0.32-0.88		$m(\tilde{t}_{1},\tilde{c})-m(\mathcal{X}_{1}^{v})=5 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}, m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0})=180 \text{ GeV}$	1711.03301 1706.03986
${ ilde \chi}_1^{\pm} { ilde \chi}_2^0$ via WZ	2-3 е, µ ее, µµ	-	Yes	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^0 \\ \tilde{\chi}^{\pm} / \tilde{\chi}^0 \end{array} 0.17 $			0.6		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=10$ $m(\tilde{\chi}_{1}^{0})=10$	1403.5294, 1806.02293 1712 08119
$ \begin{aligned} \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \text{ via } Wh \\ \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \end{aligned} $	$\ell \ell / \ell \gamma \gamma / \ell b b$ 2τ	-	Yes Yes	20.3 36.1		0.26		0.76	$m(ilde{\mathcal{X}}_1^{\pm})$ -m	$\begin{split} & m(\tilde{\chi}_{1}^{0}) = 0 \text{ m}(\tilde{\chi}_{1}^{0}) = 0 \\ & m(\tilde{\chi}_{1}^{0}) = 0, \ m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ & (\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}, \ m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \end{split}$	1501.07110 1708.07875 1708.07875
$\tilde{\mathcal{E}}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, μ 2 e, μ	0 ≥ 1	Yes Yes	36.1 36.1	ℓ ℓ 0.18		0.5			$\mathfrak{m}(ilde{\chi}_1^0)=0$ $\mathfrak{m}(ilde{\ell})-\mathfrak{m}(ilde{\chi}_1^0)=5~{ m GeV}$	1803.02762 1712.08119
$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	0 4 <i>e</i> , µ	$\geq 3b$	Yes Yes	36.1 36.1	<i>Ĥ</i> 0.13 <i>Ĥ</i>	0.23 0.3		0.29-0.88		$\begin{array}{l} BR(\tilde{\chi}^0_1 \to h\tilde{G}){=}1\\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}){=}1 \end{array}$	1806.04030 1804.03602
Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} 0.15 $		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^{\tilde{V}}$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$	SMP 2 γ displ. <i>ee/eμ/μ</i>	- Multiple - μ -	- Yes -	3.2 32.8 20.3 20.3	$ \tilde{g} \\ \tilde{g} [\tau(\tilde{g}) = 100 \text{ ns}, 0. \\ \tilde{\chi}_1^0 \\ \tilde{g} $	2 ns]	0.44		1.6 1.6 1.3	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ $1 < \tau(\tilde{\chi}_1^0) < 3 \text{ ns, SPS8 model}$ $6 < c\tau(\tilde{\chi}_1^0) < 1000 \text{ mm, } m(\tilde{\chi}_1^0)=1 \text{ TeV}$	1606.05129 1710.04901, 1604.04520 1409.5542 1504.05162
$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \end{array} $	<i>eμ,eτ,μτ</i> 4 <i>e, μ</i> 0 4	- 0 -5 large- <i>R</i> j Multiple	- Yes ets -	3.2 36.1 36.1 36.1	$ \begin{array}{c} \tilde{v}_{\tau} \\ \tilde{X}_{1}^{\pm} / \tilde{X}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12} \\ \tilde{g} [m(\tilde{X}_{1}^{0}) = 200 \text{ GeV}, \\ \tilde{g} [\lambda_{112}^{\prime\prime} = 2e \cdot 4, 2e \cdot 5] \end{array} $	a _k ≠ 0] 1100 GeV]		0.82	1.9 1.33 1.3 1.9 5 2.0	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07 m $(\tilde{\chi}^0_1)$ =100 GeV Large λ''_{112} m $(\tilde{\chi}^0_1)$ =200 GeV, bino-like	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t \bar{t} \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs \\ \tilde{t}\tilde{t}, \tilde{t} \to t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to bs \end{array} $	0	Multiple Multiple 2 jets + 2	b -	36.1 36.1 36.7	$ \tilde{g} [\lambda''_{323}=1, 1e-2] \\ \tilde{g} [\lambda''_{323}=2e-4, 1e-2] \\ \tilde{t}_1 [qq, bs] $		0.42	55 1.05 0.61	1.8 2. ⁻	1 $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like $m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 1710.07171

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

A Broader View: Status of BSM Searches at LHC

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: July 2018

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	<i>ℓ</i> , γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ el $\geq 1 \text{ b, } \geq 1Ju$ $\geq 2 \text{ b, } \geq 3$	Yes - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	Mo 7.7 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV GKK mass 3.8 TeV KK mass 3.8 TeV	$n = 2$ $n = 3 \text{ HLZ NLO}$ $n = 6$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier (1,1), $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	1711.03301 1707.04147 1703.09217 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WV \to qqqq \ \text{mod} \\ \text{HVT } V' \to WH/ZH \ \text{model B} \\ \text{LRSM } W'_R \to tb \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ r, \mu \\ 1 \ \tau \end{array}$ lel B 0 e, μ multi-channe multi-channe	 2 b ≥ 1 b, ≥ 1J/ - 2 J el el	- - Yes Yes -	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass 4.5 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 5.6 TeV W' mass 3.7 TeV V' mass 4.15 TeV V' mass 2.93 TeV W' mass 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
C	CI qqqq CI ℓℓqq CI tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – j Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^{-} 40.0 TeV η_{LL}^{-} $ C_{4t} = 4\pi$	1703.09217 1707.02424 CERN-EP-2018-174
MQ	Axial-vector mediator (Dirac D Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM)	0 Μ) 0 e, μ c DM) 0 e, μ 0 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.55 TeV m _{med} 1.67 TeV M. 700 GeV	$\begin{split} g_q = 0.25, g_\chi = 1.0, m(\chi) &= 1 \text{ GeV} \\ g = 1.0, m(\chi) &= 1 \text{ GeV} \\ m(\chi) &< 150 \text{ GeV} \end{split}$	1711.03301 1711.03301 1608.02372
ГΩ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$\begin{aligned} \beta &= 1\\ \beta &= 1\\ \beta &= 0 \end{aligned}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$\begin{array}{c} VLQ \ TT \rightarrow Ht/Zt/Wb + X\\ VLQ \ BB \rightarrow Wt/Zb + X\\ VLQ \ T_{5/3} \ T_{5/3} T_{5/3} \rightarrow Wt + X\\ VLQ \ Y \rightarrow Wb + X\\ VLQ \ B \rightarrow Hb + X\\ VLQ \ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe X $2(SS)/\ge 3 e_{,y}$ $1 e_{,\mu}$ $0 e_{,\mu}, 2 \gamma$ $1 e_{,\mu}$	el el $\mu \ge 1 \text{ b}, \ge 1 \text{ j}$ $\ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	j Yes j Yes j Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.44 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2j 1j 1b,1j -	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.6 TeV t* mass 2.0 TeV t* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$ \frac{1 e, \mu}{2 e, \mu} \\ 2,3,4 e, \mu (SS \\ 3 e, \mu, \tau \\ 1 e, \mu \\ - \\ - \\ \sqrt{s} = 8 \text{ TeV} $	$2 j$ $2 j$ $S) -$ $1 b$ $-$ $\sqrt{s} = 13$	Yes - - Yes - - 3 TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 560 GeV N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{\text{non-res}} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059
							Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Absence of evidence is not evidence of absence

meaning:

no sign of physics BSM from Run-I / Run-II data, but unexplored phase space still large!

... and there are corners that cannot be fully explored with LHC, even within its energy / mass reach.

Summary

- The Standard Model is incomplete conceptual problems and failures to describe astrophysical observations. But so far experiments have not yet revealed concrete discoveries of New Physics
- A wide range of theoretical models:
 - Grand Unified Theories as an overarching theory at very high energies
 - Supersymmetry, Large Extra Dimensions, ... on the electroweak scale
- A rich array of experimental searches at the LHC, looking for:
 - New particles
 - Dark Matter candidates
 - New forces and unexpected phenomena

Up to now: Nothing found!

Summary

- The Standard Model is incomplete conceptual problems and failures to describe astrophysical observations. But so far experiments have not yet revealed concrete discoveries of New Physics
- A wide range of theoretical models:
 - Grand Unified Theories as an overarching theory at very high energies
 - Supersymmetry, Large Extra Dimensions, ... on the electroweak scale
- A rich array of experimental searches at the LHC, looking for:
 - New particles
 - Dark Matter candidates
- Up to now: Nothing found!
- New forces and unexpected phenomena
 - Next (and final!) Lecture:

Physics beyond the Standard Model in the Early Universe - B. Majorovits, 04.02.2018

15.10.	Introduction, Particle Physics Refresher	F. Simon
22.10.	Introduction to Cosmology I	B. Majorovits
29.10.	Introduction to Cosmology II	B. Majorovits
05.11.	Particle Collisions at High Energy	F. Simon
12.11.	The Higgs Boson	F. Simon
19.11.	The Early Universe: Thermal Freeze-out of Particles	B. Majorovits
26.11.	The Universe as a High Energy Laboratory: BBN	B. Majorovits
03.12.	The Universe as a High Energy Laboratory: CMB	B. Majorovits
10.12.	Particle Colliders	F. Simon
17.12.	Detectors for Particle Colliders I	F. Simon
	Christmas Break	
07.01.	Detectors for Particle Colliders II	F. Simon
14.01.	Cosmic Rays: Acceleration Mechanisms and Possible Sources	B. Majorovits
21.01.	Supernovae Accelerators for Charged Particles and Neutrinos	B. Majorovits
28.01.	Searching for New Physics at the Energy Frontier	F. Simon
04.02.	Physics beyond the Standard Model in the Early Universe	B. Majorovits

