

Workpackage issues

Simulation studies in Valencia

C. Lacasta, C. Mariñas, M. Vos

IFIC-Valencia

_

- Thermal parameters
- Cooling options

Contributions: P. Fischer, I. Peric, Ch. Kreidl, H.G. Moser, H. Krüger, Ch. Kiesling, C. Lacasta

- Thermal/mechanical studies in Valencia
- Summary

> DCD

• In the PXD of Belle II, we have 250 columns; but because of we read 4 rows simultaneously, then we will need 1000 readout channels (4 DCDs needed in final design asuming the new geometry with 256 channels per chip).

• The DIGITAL power consumption of this chips is 768μ A/channel. So, for 1000 channels, the current is 0.768A.

• The ANALOG power consumption is 2mA/channel. So, for 1000 channels, the current is 2A.

• Because of the voltage is 1.8V, the total DCD power consumption per half ladder is **5Watts** (Digital=1.4W, Analog=3.6W)

• For the PXD6 production, only 3 DCDs with 256 inputs are proposed; so he p.c. is **3.82W**.

> SWITCHERs

• Each Switcher uses 0.09W (Digital=40mW, Analog=50mW)

> DHP

• Still we have no reliable numbers for the DHP. Nevertheless, we will asume a power consumption of **2W** per half ladder for our simulations.

> SENSOR

CSIC

• Assuming a drain current of 100µA and a Source-Drain voltage of 5V, we have 0.5mW per active pixel. There are 1000 pixels (250pixels x 4 rows) active in each module half \rightarrow 0.5W/half module

Switcher structure

- Dimensions: 1.2x3.6 mm².

-Bumps: 32 for Gate, 32 for Clear, 32 for control (16 on the top and 16 on the bottom)

- Bump pitch array is $150 \times 150 \mu m^2$.

- 1000 lines/(4 lines each time \cdot 32 contacts)= 8 Switchers/ladder

PEPFE,

Switcher bumps

- Sizes and number of bumps are final for the Switcher.

- We will use a gold bump with a solder ball on top of it.

- The gold sphere (99.99% gold), which will be bumped to the Switcher and flattened, has a diameter \sim 35µm. They have a diameter of 60µm after coining.

- The Al-pads are round, and the diameter is 70µm

- The solder ball has diameter of ~100 μ m. It is an alloy: Sn-3Ag-0.5Cu. Solder Ball Type is Hitachi Metals SAC305.

 $K_{Gold} = 317 \frac{W}{m \cdot K}$ $K_{Gold} = 57 \frac{W}{m \cdot K}$ $K_{Sn - 3Ag - 0.5Cu} = 57 \frac{W}{m \cdot K}$ $K_{Sn - 3Ag - 0.5Cu} = 57 \frac{W}{m \cdot K}$ $K_{Sn - 3Ag - 0.5Cu} = 57 \frac{W}{m \cdot K}$

→ <u>Underfilling</u> material is not decided yet. Its thermal conductivity varies from 0.5 to 1.8 W/mK.

- 3 DCD used in PXD6 production

- 4 DCD in final production

- Dimensions: $3280x5000 \ \mu m^2 + 130 \ \mu m$ to both dimensions due to the fact that the die is not cut exactly to the designed size.

- Bumps: 432 bumps (256 inputs+80 power+64 output+32 JTAG)

- Bump pitch array is 200µm in X direction and 180µm in Y.

- Sizes and number of bumps are not fixed yet for the DCDs.
- We also don't know how large the balls will be, nor which material.
- Several different options opened: Sn63/Pb37, Sn5/Pb95, and Sn/Ag/Cu, Sn/Ag.
- A rough number for the ball diameter is between $80-120\mu m$.

$$K_{Sn63/Pb37} = 50 \frac{W}{m \cdot K}$$
$$K_{Sn5/Pb95} = 35.2 \frac{W}{m \cdot K}$$
$$K_{Sn/Ag} = 33 \frac{W}{m \cdot K}$$
$$K_{Sn/Ag/Cu} = 57 \frac{W}{m \cdot K}$$

• Let's assume a conductivity of 45 W/mK for this bumps, as a mean value of all of these numbers.

• And a bump diameter of 100μm

- Dimensions: 3280x5000 μm^2

- Bumps: 432 bumps. Some of them are dummy bumps.

- Bump pitch array is $200\mu m$.

As a first approximation:

• The dimensions will be similar to the DCD. The combined width of the DHP chips will occupy the width of the active DEPFET pixel area: something between 11 and 13mm - neglecting the gaps between the chips.

• The number of IOs will be less than the DCD but we will use dummy bump pads to have a regular bumping grid with 200µm pitch all over the chip

	Layer 1	Layer 2
R _{min} (cm)	1.3	2.2
Sensitive Width (cm)	1.25	1.25
Balcony (cm)	0.2	0.2
Geometrical Width (cm)	1.5	1.5
Sensitive Length (cm)	7.5	11.7
Geometrical Length (cm)	8.06	12.26

- Sensitive Length_{Inner}=1000 lines · 75 microns=7.5cm
- Sensitive Length_{Outer}=1000 lines \cdot 117microns=11.7cm
- Sensitive Width=250 columns · 50 microns=1.25cm

Setting limits

• The maximum temperatures allowed for the good performance of the detector in our simulations are:

T_{max} (Sensor)<30°C T_{max} (Chips)<60°C

• We asume a total power dissipation of 9Watts distributed this way:

✤ 6W on the DCDs

✤ 0.5W on the sensor, uniformly distributed over the sensitive area

✤ 0.5W on the Switchers

2W on the DHP

$$K_{\text{Diamond}} = 2000 \frac{W}{m \cdot K}$$
$$K_{\text{TPG}} = 1600 \frac{W}{m \cdot K} \text{ and } 80 \frac{W}{m \cdot K}$$

Cooling options

A couple of cooling options have arised:

□ 'Up' cooling

- TPG on the top of the chips and a diamond finger covering the free end's area
- Complicated design
- TPG bridge ?
- Sensor temperature ?
- □ 'Down' cooling
 - Diamond down the sensor, covering all the end's lower area
 - Simply and clean design
 - Chips temperature (noise) $? \rightarrow$ Noise ~ sqrt(kT). Increasing temperature from 0°C to 80°C gives only 14% more noise
 - Distance from IP (resolution) $? \rightarrow$ Physics impact in the detector placed 400 µm further away? What about background?
- We should choose the simpler working option

Studies needed

Physics simulation

- Background
- Impact parameter resolution with distance to IP
- > Thermal measurements and simulation
 - Heat conduction through the ball array
 - Chips/sensor temperature with the two cooling options
 - Cross-check with dummies
- Mechanical dummies
 - TPG bridge

Switcher in FE

Adressing the drawbacks...

- Will the bumps be the bottleneck for the heat?
- What about the temperature of the chip?

Switcher chip as defined in previous parameters

- 1.2x3.6 mm².
- 96 Bumps
- Bump pitch array 150x150µm².

Applying loads

Apply loads:

- Heat generation in the upper volume
- Cool the bottom of the sensitive block
- \rightarrow See the temperature's evolution

CSIC

VNIVERSITAT ID VALÈNCIA

Replace the array of bumps, by a block of thickness equal to the bump heigth, filling the total width and

 $\mathbf{k}_{\mathsf{eff}}$

In order to implement the complete module keeping the computer time reasonable, lets look for an equivalent thermal coefficient of the bump matrix

VALENCIA

`Forced' equivalent model

Let's modify by hand the k_{eff} until reached the expected value...

 $\rightarrow k_{eff} = 6W/m-K$

Very good agreement 'Full-Fast' simulations

T substrate (K) T chip (K); 0.5W; Full T chip (K); 0.5W; Fast T chip (K); 1W; Full T chip (K); 1W; Fast T chip (K); 1.5W; Full T chip (K); 1.5W; Fast

278	279,59	279,5	281,17	281	282,75	282,5
283	284,59	284,5	286,17	286	287,75	287,5
288	289,58	289,5	291,16	291	292,74	292,5
293	294,58	294,5	296,16	296	297,74	297,5
298	299,58	299,5	301,16	301	302,74	302,5
303	304,58	304,5	306,16	306	307,74	307,47

CSIC

VNIVERSITAT

Introducing convection

Env. Temp. (K)

A 100 μ m sensor helps cooling \rightarrow 29°C with free convection!

VNIVERSITAT ID VALÈNCIA

> Dummy chips created to test the electrical connections.

- 450 µm thick dummy chip and substrate
- Solder balls with and without gold underbump metallization availiable

Future studies

- Bowing effects due to the self weight
- Effects of the self weight + Temperature contributions
- Cross-check with metrology measurements
- Vibrations. Natural frequencies
- Thermal stress
- Effects on heat radiation
 - Beam pipe to inner/outer layers
 - Inner layer to outer layer

- List of parameters for thermal simulations have been created
- A couple of thermal solutions arised
 - Up/ Down cooling
 - Both solutions with pros/cons
- (Valencia) Studies are on the way
 - Working on the "Down" cooling solution
 - Flip-chip thermal studies for any cooling option
 - Self bowing (measurements and simulation) and thermal stress
- "Down" option present good performance if contacts optimized

Thank you very much!

