

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko, Stefan Heindl

Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

Barcelona, 8.10.2009

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 1
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

A D > A D > A D >
 A
 A

 $\exists \rightarrow$

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko

Barcelona, 8.10.2009

2 Measurements

▲ロト ▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 3
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

Assumptions

- 17 W total power dissipation (8 W at each module end)
- to simulate the bump bonding: a layer (50 μ m thickness) with λ =5 W/mK between the chips and the silicon
- 20°C ambient temperature

Contact cooling with diamond strips

- two diamond strips (7mm×0.4mm×50mm) glued on the both ends of the module
- adhesive layer: 50 μ m thick, thermal conductivity λ =5 W/mK
- −30°C cooling temperature

Cooling from below

- diamond strip glued on the underside of the silicon
- advantages: simple mounting, large contact area (98 mm²)
- disadvantage: larger distance between the inner layer and the beam pipe

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko

Barcelona, 8.10.2009

- advantages: no heat transfer through the silicon, heat is lead away directly from where it is produced
- disadvantage: chips have to be of the same height, mechanical stress to the bonds

Min: 33.456

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 8
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

Cooling from above (with TPG-bridge)

- diamond strip glued on the upside of the silicon (42 mm² contact area)
- TPG-bridge (10mm×0.2mm×14mm) to connect the diamond directly to the chips
- $\blacksquare~\sim 7-8^\circ C$ higher temperature

best results from diamond glued directly on the chips

- nearly the same results from gluing the diamond on the underside
- $\blacksquare ~\sim 8^\circ C$ higher temperature on the edge of the active area with a TPG-bridge

Image: A math display="block">A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A math display="block"/>A math display="block"/A math display="block"/A math display="block"/A math display="block"/>A math display="block"/A math display="block"/A math display="b

Air flow

- cooling by diamond strips glued on the underside of the silicon
- −30°C cooling temperature
- air flow along the module (air temperature 20°C)

 \rightarrow temperature at the center of the module decreases significantly with higher air velocity (nearly no change on the edges of the active area)

Image: A matrix and a matrix

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 11
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

Possible solution

- $-35^{\circ}C$ cooling temperature
- $5^{\circ}C$ air temperature, 5 m/s air velocity

Conclusions

- A cooling temperature of −30°C or lower is needed (if the diamond ist 7 mm wide and 0.4 mm thick)
- Slightly higher cooling temperature may be enough with a wider/thicker diamond strip and/or lower ambient temperature
- Similar results for all three possible diamond positions
- DEPFET temperature is 7°C higher when cooled with the TPG-bridge as by cooling from below, has to be verified experimentally

- L

Air flow is needed to cool down the center of the module

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko

Barcelona, 8.10.2009

Experimental setup

Piece of silicon (15mm×80mm×0.5mm = half ladder) heated by SMD-resistors and cooled through a diamond strip (8mm×50mm×0.4mm)

First setup: diamond glued on the underside of the silicon (below the resistors)

A D > A D > A D >
 A
 A

1 B

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 15
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

New setup

New setup: diamond glued on the upside of the silicon. For the connection with the heat source a TPG stripe (0.3 mm thick) was glued on the resistors and on the diamond

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko

Barcelona, 8.10.2009

- 15°C temperature gain when using the TPG-strip
- even with the TPG-strip the temperature is 17°C higher than by cooling from below

 Thermal studies of DEPFET cooling for Belle II
 Oksana Brovchenko
 Barcelona, 8.10.2009

 17
 Institut für Experimentelle Kernphysik, Universität Karlsruhe (TH)

temperature by $\sim 0.7^{\circ}C$

Thermal studies of DEPFET cooling for Belle II Oksana Brovchenko Barcelona, 8,10,2009 Institut für Experimentelle Kernphysik. Universität Karlsruhe (TH)

First conclusions

- Cooling only through a diamond glued on the upside of the silicon is not effective
- Setup with TPG-strip is very sensitive to mechanical stress and gluing, results are not exactly reproducible (preliminary) → more tests necessary
- Relatively high temperature already with 300μ m thick TPG-strip \rightarrow is it reasonable to test thinner TPG-strips?
- For cooling temperature higher than -5°C: 1°C lower cooling temperature leads to 0.7°C lower silicon temperature → -32°C cooling temperature needed to reduce silicon temperature to 30°C (for 6 W)

Thermal studies of DEPFET cooling for Belle II

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Thank you

Thermal studies of DEPFET cooling for Belle II

Oksana Brovchenko

Barcelona, 8.10.2009