Physics Studies for the PXD Optimisation

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

TAP Dy Sit

MPI Munich

Burkard Reisert DEPFET3 Barcelona Andreas Moll Kolja Prothmann <u>Burkard Reisert</u> Max-Planck-Institut für Physik

Zbynek Drasal Charles University Prague

Content

Introduction: Physics Channel

- Master plan for optimization study
- Benchmark plots
- Model of resolution function
- Summary and Outlook

MPI Munich

Introduction

- Aim: Evaluate PXD options with realistic physics benchmark process
- Vertex resolution key to all CP violation measurements
 - → Study "Golden Channel":

MPI Munich

Burkard Reisert DEPFET3 Barcelona

High precision vertexing essential for this type of measurements

Master Plan for Optimization Study

A.) Establish analysis chain in Belle framework: BASF

- well-proven tool box for Physics analysis in Belle
- 1. Generate events (EvtGen)
- 2. Simulate events (Belle Geometry)
- 3. Analyze events (BASF / ROOT)

B.) Implement analysis in ILC framework: Mokka/Marlin

tool box for detector optimization studies

- 1. Interface EvtGen output
- 2. Simulate events with ILC framework setup for Belle geometry
- 3. Reconstruct vertices using MarlinRave as Vertex fitter

Comparison of A and B establishes baseline for optimization study

MPI Munich

C.) Rerun B.) for various Belle II detector (and beam) scenarios

Event Reconstruction

- EvtGen: Generate 100 000 entangled B⁰ B⁰ pairs
- Force "golden" decay modes:

MPI Munich

Burkard Reisert DEPFET3 Barcelona Match generator level to reconstructed candidates by hit fraction requirement on all daughter tracks

Methods to reconstruct CP side vertex

MPI Munich

Burkard

Reisert

DEPFET3

Barcelona

Methods to reconstruct Tag side vertex

MPI Munich

Burkard

Reisert

DEPFET3 Barcelona

Fit Model for Resolution

Best Fit:
$$\sigma_{vtx} = N \left\{ \frac{(1 - f_1 - f_2)}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) + \frac{f_1}{2\lambda_1} \exp\left(-\frac{|x - \mu|}{\lambda_1} + \frac{f_2}{2\lambda_2} \exp\left(-\frac{|x - \mu|}{\lambda_2}\right)\right) \right\}$$

Gauss + two exponentials

Resolution is characterized by -Core: width of Gaussian

(e.g. σ=24μm)

MPI Munich

Burkard Reisert DEPFET3 Barcelona -Tail: fraction of histogram entries outside 3σ-window, independent of fit details on tail.

fraction on histrogram: 9.88% (fraction evaluated by fit: 9.96%)

Mokka/Marlin Progress

- Work started to implement physics benchmark in Mokka/Marlin
- No results yet, the devil is in the details e.g.:
 - Loss of (some) Generator level information (B0 vtx set to zero) when interfacing EvtGen with Mokka/Marlin, B⁰B⁰ no longer entangled when decayed by Geant4
 - ILC framework not tuned for low momentum tracks
 → fake tracks, multiple reconstruction of loopers
 - Learning how to use MarlinRave vertex fitter, compiling the package at MPI larger effort than expected
 - Discovered differences when running local jobs (at MPI) on batch jobs on farm (at Rechenzentrum Garching)
- Will cut some corners to quickly get to some results on J/ψ vertex resolution

MPI Munich

Summary

- Benchmark analysis in the Belle framework (BASF/ROOT) is running
- Characterization of vertex resolution presented
- Work on implementing benchmark analysis in Marlin/Mokka framework has started

Outlook

MPI Munich

- Plan to present first comparison of BASF and Marlin/Mokka on B2GM in November
- Will try hard to also present first studies of the PXD geometry for Belle II

Backup Slides

Characterize events on generator level
 DeltaZ
 JPsi→mumu
 Ks→pipi
 Fast pi, D*, slow pi
 D⁰→Kpi

MPI Munich

MPI Munich

Gen: J/Psi→mumu

Burkard Reisert DEPFET3 Barcelona

7 Ap. Ag > 1t

MPI Munich

Gen: K0s→pipi

MPI Munich

Gen: fast pi, Dstar, slow pi

TA+ Ag > it

MPI Munich

Gen: D⁰→Kpi

MPI Munich