

Data Handling Hybrid (DHH) Design Ideas and Issues

Ariane Frey

Universität Göttingen

Tasks of the DHH

All communication from and to the ladders goes through the DHH !

- 1 DHH per half-ladder (total 40)
- Connection between DHP and ATCA DAQ system
 - Impedance matching
 - Electrical \leftrightarrow optical
 - Power filtering
 - Local power regulation (?)
 - Slow control (JTAG)

z = 0

DHP requirements

Table of signals for the DEPFET module

Signal name	Туре	Description	Comment
GCK	LVDS in	42.3 MHz (?) system clock	RF clock (F0) devided by 12
FCK	LVDS in	99.2 kHz frame clock	synchronous to the beam gap
TRG	LVDS in	trigger	10-30 KHz
TMS	LVCMOS in	JTAG mode select	
TCK	LVCMOS in	JTAG clock	change to LVDS?
TDI	LVCMOS in	JTAG data in	
TDO	LVCMOS out	JTAG data out	
RST	LVCMOS in	reset	for all chips? polarity?!
DO[5:1]	CML out	DHP data out	one per chip

+ power lines

From Hans Krüger

- un-triggered r/o \rightarrow 6-8 Gbit/sec per module, 1-1.3 Gbit per link (x6)
- triggered r/o (10 kHz) would require 1.8 Gbit per module only

Data Transmission for the BaBar SVT

MUX MODULE

Data Transmission for the BaBar SVT

Twisted Pair cables (24 AWG)

Proposal: small interconnect card very close to the Ladders (~ 40 cm)

- Impedance matching (& voltage sensing ?)
- Power filtering
- Kapton \leftrightarrow cable
- Cannot be just passive, need at least line drivers and probably do optical conversion for high speed data

- 5,66 x 1.48 x 1.243 cm^3
- Single power supply (3.3V)
- Up to 2.125 Gb/s
- ~ 0.8 W
- Radiation tolerance ??

DOCKs

Or find a way to make it to the docks...

40 x 20 x12cm (LxWxH) Al boxes, water cooled, overcrowded now, at cooling limit Only 4 'compartments, on each side Probably more needed for the new strip det. + PXD ! →Request to mechanics designers to forsee more space

From Pablo Vazquez, Ringberg

Figure 20: Cross section of DOCK in BELLE complex at forward direction

J. University of Göttingen

- Small interconnect card (mounted on magnets?), rough size estimate: connector edge ~5 cm, ~ 60 cm^2, trapezoidal shape, ~ 1.5 W (if optical conversion)
 HOW MUCH SPACE AVAILABLE ?
- Connects to board either outside of the detector or inside the docks containing FPGA (slow control master). Slow control system ? Sent to DAQ via optical link ?
- o Power is routed from regulator boards to the small interconnect card.
- o Trigger and clock do not come through optical link, but through separate cables.

Compute Nodes

(Giessen)

5 VIRTEX4 FPGAs

ATCA System (developed for HADES)