DCD2 test system and results (DEPFET matrix measurements)

Barcelona 10/2009 Manuel Koch

time resolved measurements with the DCD

- DCD can take **one** sample per T_{row}
- use sequential sampling:
 - One sample is taken from each of a number of similar waveforms.
 - or average over more samples
 - time shift the sampling point
 - The samples are **assembled** to form a composite waveform.
- requires periodic and stable input signals
- current implementation allows 96 samples per T_{row}
- time resolution depends on DCD speed
 - eg. T_{row} = 1500ns : steps of 15.6ns
 - eg. T_{row} = 96ns : steps of 1.0ns
- this technique is used for
 - rise time measurements
 - time resolved DEPFET current output
 - investigation / setting of optimal sampling points

2

Time resolved DEPFET output current (very slow)

- Row-time divided in 96 steps
- each point sampled 1000 times, then averaged

universität**bonn**

Direct TIA output of DEPFET @500kHz row-rate

- note: crosstalk due to DCD internal CK; switcher CK falling edge
- advise to put switcher falling edge CK within clear period
- TIA: AD8015 chip, same as on S3B

universität**bonn**

Time resolved DEPFET output current (still to slow)

- noise still very low, spikes and valleys are (reproducible) really there
- long drain recovery time after DEPFET gate/clear switching
 - → overlapping Gate-Switcher outputs?

universität**bonn**

Direct TIA output of DEPFET @6.2MHz row-rate

 note: noise/oscillations due to wide bandwidth of TIA , simple setup and crosstalk

Time resolved DEPFET output current (half of target speed)

- settling time is more dominant now
- sampling steps now 1.25ns \rightarrow more details on edges

universität**bonn**

Time resolved DEPFET output current (maximum speed so far)

- sampling steps now 0.96ns
- speed limits given by DCD and FPGA implementation

Time resolved DEPFET output current – late clear for single sample

- put clear at end of time, sample only once with DCD
- safety margin for
 - large devices / long drains
 - longer gate/clear rise times (quad-rows, CCCG, length, ...)
 - jitter, delay on lines, ...

Am241 Source – double sampling

- only one row (256 pixels) available for seeds
- measured 300k frames
- preliminary look on the data with modified existing Monitor Software
- T_{row} 2000ns

Am241 Source – single sampling

- no longer double sampling with DCD
- pedestals given by first 1000 frames

Summary

- DCD system allows time resolved studies of DEPFET signals
- DEPFET / DCD sees first source signals!
- directly connected TIA is a great educational tool!
- next step: use available PXD5 large DEPFET matrix

- For T_{row} 90ns double sampling barely allows settling of signal
 - extrapolating for larger DEPFETs: no longer possible
 - unless we enhance the Switcher (overlapped outputs)
- single sampling works (technically)
 - need more studies with source/laser at high speed readout
 - try running-average 'digital double sampling'
 - DEPFET pedestals stable (even for long runs ~6h)

DCD2 test system and results

Barcelona 10/2009 Manuel Koch

DCD2 Test system (FPGA PCB) - Introduction

- XILINX Virtex 4 LX40-1148
- 288Mbit RLDRAM
- USB 2.0 connection
- 16Mbit async. SRAM
- EUDET TLU connection
- Multiple high speed connectors
- FPGA handles 600MHz data input from DCD
- stable power supplies at high loads

New Hybrid (Bonn v4) - Introduction

- integrates DCD2, Switcher3
- 128x128 matrix &
 256 x 1024 (2 Switchers)
- design focused on
 - signal integrity for DCD
 - stable power supply
 - low noise design
 - testability

DCD noise vs. direct input capacitance

- 11 values of input capacitance
- 4pF ... 82pF
- bonded directly to DCD's input bump-pads
- noise (almost) independent of operating frequency

- note: changes expected for larger devices
 - C distributed over long resistive line

DCD noise vs. direct input capacitance

- previous measurements (Ringberg 05/2009) showed too high noise
- problem due to grounding of capacitors
- easy fix with shorter and more wires

full picture of 'unfortunate' setup

total noise vs. capacitance

- correction to plots shown in Ringberg 05/2009
- not optimized for speed / rise time

- total speed also depends on current flowing through cascode transistor
 - good results with minimum 10μA
 - maximum(!) 50μA working range
 - DEPFET has ~50-100µA drain current -> subtract some current in front of cascode

time resolved measurements with the DCD

- DCD can take **one** sample per T_{row}
- use **sequential sampling:**
 - **One sample** is taken from each of a number of similar waveforms.
 - or average over more samples
 - time shift the sampling point
 - The samples are **assembled** to form a composite waveform.
- requires periodic and stable input signals
- current implementation allows 96 samples per Trow
- time resolution depends on DCD speed
 - eg. T_{row} = 1500ns : steps of 15.6ns
 - eg. T_{row} = 96ns : steps of 1.0ns
- this technique is used for
 - rise time measurements
 - time resolved DEPFET current output
 - investigation / setting of optimal sampling points

25

Cascode – compensation / typical output

- vdda 1900, vcavss 1050, CascAmpBias 500 CascAmpLoad 200 CascAmpSF 250 InjBias 200 InjSig 80 "sf compensation.ini"
- DCD runs with 160ns T_{row} to clearly see rise time

cascode dynamic behavior - speed

• 20ns limit is given by DCD current memory cells

- settings chosen for rise behavior without overshoot
- vdda 1900, vcavss 1050, CascAmpLoad 250 CascAmpSF 250 InjBias 100 InjSig 95
- 300MHz readout speed \rightarrow 160ns sample-clear-sample

cascode dynamic behavior – noise

→ @600 VCascAmpBias: for 68pF capacitance, rise time of 20ns with ~ 1.1 LSB noise, 5.6mW/channel total

Switcher Integration

- Switcher 3 has been successfully integrated!
 - existing C++ classes / Verilog re-used
- rise times of switcher vs. cap-load confirmed (CK, Mannheim)
- implemented new sequencer
 - allows timing fine adjustment
 in 96 steps per T_{row}
 - runs synchronized to DCD for repeatable measurements

Switcher 3 – output overlap

- two neighboring channels
- no extra capacitive load (Tektronix P6243 <1pF)

Switcher 3 – output overlap

- two neighboring channels
- extra 22pF capacitive load (+ Tektronix P6243 <1pF)

DEPFET Matrix Integration

- running with COCG L E device
 - 6 drains (3 pixel columns) connected to DCD fast ADCs
 - 4 drains connected to DCD slow ADCs
- sequencer implementation allows fixed assignment of DEPFET pixels to either DCD's L/R ADC
- for reference, voltages used:
 - Source: 7.0V
 - CCG: 6.4V
 - clear low: 10.5V
 - gate on: 3.2V
 - Switcher Δ: 9V
 - bulk: 17V
 - HV: -180V

DCD, Matrix and Switchers

DCD bonded to matrix

Summary

- DCD now fully integrated into system with Switchers and DEPFET
 - first source measurements
 - time resolved DEPFET output signals
 - allows detailed studies of single-sampling, clear optimization, ...
- DCD measurements
 - cascode:
 - ~20ns settling time can be achieved with reasonable power
 - for 68pF input capacitance, noise of 1.1LSB is possible
 - solution for steps in ADC output found (for next DCD iteration)
 - will improve DNL, INL, noise
 - previous results:
 - 24 µA ADC range possible
 - ADC gain 10.2 ± 0.1 (counts / μA) @12.5MHz
- next steps:
 - compare with large (256x1024) matrix
 - source / laser measurements at higher speed

Cascode – measurement issues

- charge injection with current step (see slide)
- overshoots: artificially faster risetimes, longer settling time
- Delays for higher capacitance: (slow settings)
- Possible due to undershoot / charge injection

Cascode – charge injection / crosstalk

- Sample input current step, with InjSig=0
- **Channels** selected (Enlnj) show undershoot
- deselected ch's quiet
- green channels: no capacitance

Inj -C

- Bonding Pad \rightarrow most likely charge injection due to InjB transistor (InjB goes $1 \rightarrow 0$)
- vdda 1900, vcavss 1050, CascAmpBias 500 CascAmpLoad 150 CascAmpSF 250 InjBias 95 InjSig 0 "casc charge injection.ini"

universität**bonn**

New Hybrid (Bonn v4) - chips

Summary

- test system working reliable !
- ADC characteristics at 12.5MHz
 - total range of \approx 24µA
 - gain \approx 10 ± 0.1 LSBs / μA \rightarrow LSB \approx 100nA, small spread
 - DNL \approx 1 LSB, INL < 4 LSB
 - − noise: 0.9 LSB, \approx 1.2 LSB with L/R ADCs combined
 - noise doubles with 60pF input capacitance

