Constrained fits for $t\bar{t}$ event selection and top mass determination in the electron + jets channel

Philipp Weigell

Max-Planck-Institut für Physik ATLAS-SCT Group München

ATLAS-D Bonn, 24.09.2009

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Lepton + jets Channel

Lepton + jets Channel

Lepton + jets Channel

Fit Variables and Constraints

Invariant Masses

•
$$m_{W,\ell} = \sqrt{(p_{\ell} + p_{\nu})^2} = \sqrt{(E_{\ell} + E_{\nu})^2 - (\vec{p}_{\ell} + \vec{p}_{\nu})^2}$$

• $m_{W,h} = \sqrt{(p_{q_1} + p_{q_2})^2} = \sqrt{(E_{q_1} + E_{q_2})^2 - (\vec{p}_{q_1} + \vec{p}_{q_2})^2}$
• $m_{t,\ell} = \sqrt{(p_{\ell} + p_{\nu} + p_{b,\ell})^2} = \sqrt{(E_{\ell} + E_{\nu} + E_{b,\ell})^2 - (\vec{p}_{\ell} + \vec{p}_{\nu}(p_{\nu,x}, p_{\nu,y}, p_{\nu,z})^T + \vec{p}_{b_{\ell}})^2}$
• $m_{t,h} = \sqrt{(p_{q_1} + p_{q_2} + p_{b,h})^2} = \sqrt{(E_{q_1} + E_{q_2} + E_{b,h})^2 - (\vec{p}_{q_1} + \vec{p}_{q_2} + \vec{p}_{b,h})^2}$

Constraints (loose)

	Initial value	Uncertainty
X_1	$80.4\mathrm{GeV/c^2}$	$6 \text{GeV}/c^2$
X_2	$80.4\mathrm{GeV/c^2}$	$6 \text{GeV}/c^2$
X_3	$0 \text{GeV}/c^2$	$5 \text{GeV}/c^2$
	X ₁ X ₂ X ₃	Initial value X1 80.4 GeV/c ² X2 80.4 GeV/c ² X3 0 GeV/c ²

Neutrino Treatment

From Dataset to Selection

Determination of the Resolution

We assume the following detector resolution:

$$\frac{\sigma(E)}{E} = \frac{\alpha_i}{\sqrt{E}} \qquad [E] = \text{GeV}$$

(Distributions not centered at 0 due to jet energy scale)

Philipp Weigell (MPI für Physik)

From Dataset to Selection

Selection Recipe

Take an event

• Assign each jet to all possible roles \Rightarrow e.g. 12 Permutations for 4 jets

Do the fit

• Select the permutation with the smallest χ^2

From Dataset to Selection

Selection Recipe

- Take an event
- 3 Assign each jet to all possible roles \Rightarrow e.g. 12 Permutations for 4 jets
- O the fit
- Select the permutation with the smallest χ^2

Distribution of Selected Permutation

Mass Resolution Improvement

Fitting process \rightarrow Improved four vectors \rightarrow Resolution

Fit converges more often for signal than background ...

Т	$t\bar{t}(e + jets)$	$t\bar{t}(\text{rest})$	W+4 jets	W+5 jets
$p_{\nu,z}$	87.2	70.8	76.9	73.7
$\eta_{ u}$	87.5	70.0	76.0	72.4

... and the novel approach for the ν performs better

Mass Reconstruction

Conclusions

- Constrained χ^2 -fit + loosening for widths
- Fit selects correct jets in about $\approx 65\%$ ($p_{t,max}$: $\approx 40\%$)
- Neutrino recoverment better with η_{ν}
- Backgrounds can be suppressed
- Constraints (*m*_W, ...) improve resolution