PXD Testbeam 2018 DESY and first results

Philipp Wieduwilt, Botho Paschen, Harrison Schreeck, Benjamin Schwenker, Julian Soltau, Florian Lütticke, Patrick Ahlburg, Carlos Marinas

Universität Göttingen

philipp.wieduwilt@phys.uni-goettingen.de

January 24, 2019

Overview

1 DESY Testbeam 2018 - Setup

- Devices under test
- Backend and read-out
- Telescope
- Measurements
 - Perpendicular incidence at optimal biasing
 - Biasing studies
 - Angular scans

3 Results

- W40IF optimal efficiencies
- W110F2 optimal efficiencies
- Preview: biasing studies
- Conclusion and outlook

PXD9 DESY Testbeam 29.10.18 - 25.11.18

Test beam environment

- $3-5 \, \text{GeV}$ electron source
- no magnetic field used
- EUDET telescope with 6 Mimosa26 sensors
- upstream scintillator triggers
- downstream FEI4 sensor for triggering and timing information

Devices under test

- cut ladder modules W110F2 and W40IF
- noisy ASIC pair 3 module W05OB1
- final ASICs Hybrid5 with 75 $\mu \rm{m}$ pixels

Backend and read-out

- mass-testing/lab setup equivalent
 - LMU-PS powered via HAMEG bench PS
 - lab power-breakout board
 - DHE on carrier board (no DHC)
 - mass-testing firmware 0x1183BDC (15:28 7.8.17)
 - lab patch panel

- read-out: $DHE \rightarrow BonnDAQ \rightarrow EUDAQ + local data$
- operated using UtilityIOC, CalibrationIOC and OnlineMonitor
- \bullet grounding: lab scheme \rightarrow no forced ground connections
 - W110F2 and W050B2 could have bulk short to floating box, no effects observerd
 - W40IF isolated via kapton

Telescope setup

- from upstream to downstream
 - trigger scintillator
 - 3 Mimosa26 reference planes
 - PXD9 in light tight box
 - 3 Mimosa26 reference planes
 - FEI4 trigger and timing plane
 - Hybrid5
- Mimosa spacing
 - 2 cm for perp. incidence
 - 5 cm for angular scans
- trigger rates of 400-1.200 Hz
- PXD9 modules
 - mounted on laser cooling block (10 $^{\circ}$ C water cooled)
 - in open Alu box (light tight via tape)
 - $\bullet \ flushed \ with \ N_2$
 - on movable x-y-stage

Module conditions

- based on optimized configration from mass testing/lab with
 - 7P threshold 4
 - adjusted trigger latencies, etc.
- pedestals
 - stable, recalibrated at begin of new experiment
- HS links
 - unstable, periodically lost
 - link watchdog active
 - artificial hot 'active link pixels' for offline event check

Pre-measurements per module

- short runs with 'timing pixels'¹ for adjusting trigger delay settings
- ZP threshold scans
- x-y-alignment of sensor volume with sensitive scintillator, FEI4 and telescope planes

definitions:

- run: a set of $\approx 250,000$ consectutively recorded events
- experiment: a set of runs recorded under indentical conditions (configuration, sensor position, ...)

¹one artificially hot pixel per gate

Optimal efficiency studies

- perpendicular incidence at small telecope spacing
- optimal matrix biasing conditions (from lab results)
- collect statistics for potential in-pixel studies
- several 'illumination windows' necessary for full sensor
- done on W11OF2, W40IF and Hybrid5
- \rightarrow determine sensor efficiency and resolution at optimized biasing

Biasing studies

Biasing studies

- perpendiclar incidence at small telescope spacing
- probing HV and drift/clear-off combinations \rightarrow doping variation rings
- only one 'illumination window'
- done on W110F2, W40IF and Hybrid5
- \rightarrow study influence of doping variations (rings) on efficiency at varying biasing conditions

Angular scans

- \bullet inclined incidence in θ and ϕ
 - $\phi \in [0, 10, 20, 30, 40] \deg$
 - $\theta \in [0, 20, 30, 40, 50, 60] \deg$
- only one 'illumination window'
- done on W40IF and W05OB1
- → determine resolution improvements for inclined tracks via charge sharing (cluster database algorithm)

Preliminary results

- preliminary results for efficiencies at perp. incidence at optimal biasing
- using Benjamins testbeam analysis framework (TBSW)
 - calibration once per experiment (pixel masking, alignment, ...)

Track selection

- select tracks with a hit on the reference/timing plane (FEI4)
- select only tracks in events with all 'active link' pixels present on PXD9

W40IF total track selection

Track matching

- select subset of tracks with a matched² hit on PXD9
- dead gates and pixels visible

W40IF matched track selection

²within 200 μ m imes 200 μ m square around extrapolated track position

Philipp Wieduwilt (Uni Göttingen)

Sensor efficiency

- ratio of matched to total tracks gives efficiency ϵ
- average excluding dead pixels: pprox 99.6 \pm 1.4 %

W40IF efficiency

Efficiency uncertainty

- uncertainty on ϵ via binomial counting uncertainty
- for high statistics region $<1\,\%$
- \bullet for single pixels in the order of up to $10\,\%$

W40IF efficiency

Efficiency projections

- projections on cols and rows
- reduced due to dead gates and binning effects at borders
- fluctuations due to 'stitching' of individually calibrated experiments (pixel masks)?

W40IF efficiency projections

Efficiency projections - zoomed

- projections on cols and rows
- reduced due to dead gates and binning effects at borders
- fluctuations due to 'stitching' of individually calibrated experiments (pixel masks)?

W40IF efficiency projections

Track selection - W110F2

Efficiency - W110F2

Efficiency projections- W11OF2

• bad 4th row pattern due to broken drain lines

Efficiency projections- W110F2 - zoomed

• bad 4th row pattern due to broken drain lines

Preview: biasing studies

W40IF efficiency at non-optimal biasing

• bad biasing shows ring-shaped inefficiencies

Conclusion

- successful testbeam campaign with data from three PXD9 modules at different biasings, angles and high statistics
- not understood link instability issue
- DAQ issues result in some runs having a trigger mismatch
 - offline mismatch correction under investigation
- first results show promising efficiencies on L1 and L2 module

Outlook

- efficiency analysis:
 - correct for dead pixels and gates and border binning
 - high number of single dead pixels, check hot pixel masking
- resolution analysis
- cross-check with pedestal calibration and noisy pixel masking
- study signal-to-noise behaviour
- biasing studies:
 - correlate efficiency loss to doping variation analysis
 - determine stability of optimal biasing
- angular scans:
 - study effect of charge sharing on resolution
 - study different cluster-to-hit algorithms

Backup