

Identification of Boosted $h \rightarrow bb$ -Decays with the ATLAS-Detector

Stefan Raimund Maschek

Supervised by Dominik Duda

DPG spring meeting, March 27th 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Introduction

- Search for heavy diboson resonances decay into Zh or Wh (→ T.53.2, Andreas Hoenle)
 - Predicted by several theoretical models
 - Minimal walking technicolor, composite Higgs, …
 - Interpreted in a Phenomenological Lagrangian
 - Heavy vector triplet (HVT)
 - Z and W: leptonic decay into 0,1,2 charged leptons
 - > 3 Channels depending on lepton multiplicity

h: decay into bottom quarks Depending on the higgs momentum:

- ► Lower Momentum ($p_T \leq 300$): Reconstruct two small (R=0.4) **resolved** b-jets
- ► High Momentum ($p_T \gtrsim 300$): Reconstruct one **merged** jet (R=1)

Last Public Results

= 1

merged

regime

ATLAS Simulation Work in progress merged signal region, single b-tag diboson

2000

Z+bb

W+bb W+b+liaht

W+light single top

ttbar

1500

Z+b+light Z+light

2500 m_{VH}

Boosted Higgs→bb Tagging

Main Backgrounds

Mass Window Cut

- Default cut values on the m_{bb/h} is at [75,145]
- Especially lower cut is not optimal
- Optimal cut seems to be resonance mass dependent

Mass Window Optimization

- Define reference significance without cut (normalized entries) $\sigma_0 = \frac{S}{\sqrt{R}} = 1$
 - Significance improvement

 $\Delta \sigma(m_{BB}^{low}, m_{BB}^{high}) = \frac{\sigma(m_{BB}^{low}, m_{BB}^{high})}{\sigma_0} = \frac{\varepsilon_s}{\sqrt{\varepsilon_B}}$

- Take cut pair with highest $\Delta \sigma$ as optimal cut values.
 - For demonstration purpose (lower plot): Fix one of the cut values, vary the second
- Cut pairs with $\Delta\sigma(m^{low}, m^{high})$ in statistical agreement with maximum: 'Uncertainty' on the optimal cut value

Mass Window Optimization

- Best choice of cut values is dependent on resonance mass
 - We do not want to repeat analysis for each mass point
 - Resonance mass is correlated to jet p_{T}

- Detector mass resolution depends on transverse momentum
 - Low momenta: Out of cone effects $\sim 1/p_T$

$$\delta m \propto \frac{1}{p_T}$$

High momenta: Mass resolution goes linear with $p_{\rm T}$

 $\delta m \propto a \cdot p_T + b$

Mass window cut optimization with Background

Stefan R. Maschek

X→bb Tagging at 13 TeV

2500

р_

Background rejection

Selection reduction by new mass cut		
	1tag	2tag
signal	86%	90%
ttbar	83%	90%
W/Z+jets	55%	55%

- Statistic only likelyhood fit
- Expected limits with two different mass window approaches
 - Constant mass window
 - p_{T} dependent mass window
- Improved limits of up to 10% on cross section for most resonance masses

Merging Trackjets

 At some point (~1TeV) also R=0.2 subjets cannot be reconstructed separately

- Solutions:[ATL-PHYS-PUB-2017-010]
 - Variable radius trackjets (VR)
- Current default
- Idea: The higher the sub-jet momentum, the more collimated
- While track jet clustering, decrease R parameter with increasing jet p_T

$$R = \frac{\Delta}{p_T}$$

Center of mass subjets (CoM)

The Center of Mass Reclustering

- Perform a boost into the large-R rest frame
- Back-to-back topology of the decay products
- Recluster the jet components with exclusive kt (demand exactly 2 jets with k_{τ} algorithm)

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Summary

- Higgs jet $(h \rightarrow bb)$ identification in the VH resonance channel
- Optimization studies
 - Variable mass window
 - Potential of lowering exclusion limits about 10%
 - b-tagging in Center-of-mass jets
 - Improvement of background rejection of 50% up to 400%
- Outlook:
 - <improve mass window optimization>
 - Calculate limits for Center-of-mass jets

Efficiency improvements by CoM Subjets

Stefan R. Maschek

X→bb Tagging at 13 TeV

Ap. Ag > 1 t

Mass Window Signal and Background Efficiencies

Stefan R. Maschek

Result

$$m_{cut} = \sqrt{\left(\frac{a}{p_T}\right)^2 + \left(b \cdot p_T + c\right)^2}$$

Stefan R. Maschek