Search for displaced dileptons at the ATLAS experiment

Dominik Krauss

Max-Planck-Institut für Physik

March 26, 2019

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Search for massive, long-lived particles decaying to e^+e^- , $e^\pm\mu^\mp$ or $\mu^+\mu^-$
- Experimental signature: Displaced vertices in inner detector of ATLAS
- Sensitive to lifetimes of about 1 ps to 1 ns
- Performed on 2016 data ($L = 32.8 \, \text{fb}^{-1}$)
- $\bullet\,$ Model independent search interpreted in a supersymmetric and a Z' model

 \rightarrow Focus of this talk: Supersymmetric model

Selection criteria of signal region

- Triggers: γ (140 GeV), $\gamma\gamma$ (50 GeV) or $\mu_{\rm MS-only}$ (60 GeV)
- At least one displaced vertex with two oppositely charged leptons
 - Displacement: 2 mm in transverse plane to all pp collisions of event
 - Fiducial volume:

- e^+e^- and $e^\pm\mu^\mp$ vertices inside material vetoed using a 3D detector map
- Vertex mass $> 12 \,\text{GeV}$
- Leptons have to pass triggers and additional kinematic cuts to ensure trigger plateau

- Efficiencies higher if $BR(\mu^+\mu^-) > 0$ as no material veto applied
- Significantly lower efficiencies for light $\tilde{\chi}_1^0$
 - \rightarrow Reason: Reduced trigger and reconstruction efficiencies

- Selection criteria significantly suppress background
- Random crossings of two leptons:
 - Uncorrelated leptons from different processes randomly cross and form a vertex
 - $b\overline{b}$, $t\overline{t}$, low mass processes (esp. J/Ψ) and many more
- Cosmic muons:
 - Cosmic muon sometimes reconstructed as a back-to-back muon pair
 - Background suppressed by cosmic veto

• Collect all leptons in data passing selection criteria (55k electrons and 36k muons)

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Randomly select $N_{\text{sampled}}(\ell\ell)$ lepton pairs from this collection

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Randomly select $N_{\text{sampled}}(\ell \ell)$ lepton pairs from this collection
- Run vertex reconstruction on each pair

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Randomly select $N_{\text{sampled}}(\ell\ell)$ lepton pairs from this collection
- Run vertex reconstruction on each pair
- Count number of vertices N(Vx) passing signal region criteria

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Randomly select $N_{\text{sampled}}(\ell\ell)$ lepton pairs from this collection
- Run vertex reconstruction on each pair
- Count number of vertices N(Vx) passing signal region criteria
- Calculate crossing probability $p_{xing} = \frac{N(Vx)}{N_{sampled}(\ell\ell)}$

- Collect all leptons in data passing selection criteria (55k electrons and 36k muons)
- Randomly select $N_{\text{sampled}}(\ell\ell)$ lepton pairs from this collection
- Run vertex reconstruction on each pair
- Count number of vertices N(Vx) passing signal region criteria
- Calculate crossing probability $p_{xing} = \frac{N(Vx)}{N_{sampled}(\ell\ell)}$
- Estimate = $N_{obs}(\ell \ell) \cdot p_{xing}$

 $N_{\rm obs}(\ell\ell) =$ Number of lepton pairs observed in data

• Performance of estimation procedure tested with non-leptonic tracks

- \rightarrow Many orders of magnitude larger data sample than that of leptons
- $\bullet\,$ Data and prediction agree within 20%
 - \rightarrow Great success for this simple method

Channel	N(ℓℓ)	$p_{\rm xing}/10^{-5}$	$Estimate/10^{-4}$
ee	21	1.2	2.6
$e\mu$	10	7.0	7.0
$\mu\mu$	9	15.9	14.3

- $N(\ell\ell)$ and p_{xing} are very small
- Muons have significantly larger crossing probabilities than electrons
- \bullet Signal region estimate: (2.4 \pm 0.5 $({\rm stat.}) \pm$ 1.8 $({\rm syst.})) \cdot 10^{-3}$ events
 - \rightarrow Negligible compared to cosmic muon background

• Cosmic muons sometimes reconstructed as back-to-back muon pairs:

$$ightarrow \Delta R_{
m cos} = \sqrt{(\eta_1 + \eta_2)^2 + (|\Delta \phi| - \pi)^2} pprox 0$$

- Less than 10% of muon pairs reconstructed as displaced vertices
- ullet Cosmic veto: Reject events that have lepton pairs with $\Delta R_{cos} < 0.01$

- Study $\Delta R_{
 m cos}$ distributions of $\mu\mu$ pairs and vertices in data
- Vertex distribution vanishes at $\Delta R_{\rm cos} = 0.004$
- Distribution of pairs used to extrapolate vertex distribution to signal region
- Estimated background: $0.27 \pm 0.14 \text{ (stat.)} \pm 0.1 \text{ (syst.)}$ events

- Upper limits at 95% CL for $m(\tilde{q}) = 1.6 \text{ TeV}$
- $m(\tilde{\chi}_1^0) = 1.3 \text{ TeV}$: Lifetimes between 3 mm and 1 m excluded
- $m(\tilde{\chi}_1^0) = 50 \text{ GeV}$: No constraints for $\mathsf{BR}(\mu^+\mu^-) = 0$

- Search for displaced vertices with two oppositely charged leptons
- Model independent search
- \bullet Signals: Supersymmetric model with long-lived $\tilde{\chi}^0_1$ and long-lived Z' model
- Dominant background contribution from cosmic muons
- Very small background of 0.3 events