

Measurement of the HZZ Tensor Coupling in $pp \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ Decay Channel with the ATLAS Detector

DPG Spring Meeting Aachen 2019

Verena Walbrecht Supervisor: Sandra Kortner

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Thursday 28th March, 2019

Higgs Boson Coupling Measurements

- Measurement of (σ x BR) in several production and decay modes
- So far: no deviations from the SM observed
- But: in some channels large uncertainties
- Still possible to measure effects from physics beyond the SM
- Increasing statistics: use kinematic properties to search for BSM physics

This work: 140 fb⁻¹ with full Run II data

Verena Walbrecht - HZZ Tensor Coupling

Higgs Boson Coupling in Effective Field Theories

• Effective field theory assumption: Physics beyond SM appears at an energy scale $\Lambda \gg E$

arXiv:1709.06492

Higgs Boson Coupling in Effective Field Theories

- Effective field theory assumption: Physics beyond SM appears at an energy scale $\Lambda \gg E$
- SMEFT: Lagranigan is constructed out of SU_C(3) x SU_L(2) x U_Y(1) invariant higher dimensional operators built out of SM fields:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{5} + \mathcal{L}_{6} + \mathcal{L}_{7} + \dots$$
 $\mathcal{L}_{d} = \sum_{i=1}^{n_{d}} \frac{\bar{c}_{i}^{\alpha}}{\Lambda^{d-4}} O_{i}^{d}$ (for d>4)

А

Higgs Boson Coupling in Effective Field Theories

- Effective field theory assumption: Physics beyond SM appears at an energy scale $\Lambda \gg E$
- SMEFT: Lagranigan is constructed out of SU_C(3) x SU_L(2) x U_Y(1) invariant higher dimensional operators built out of SM fields:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{5} + \mathcal{L}_{6} + \mathcal{L}_{7} + \dots$$
 $\mathcal{L}_{d} = \sum_{i=1}^{n_{d}} \frac{\bar{c}_{i}^{d}}{\Lambda^{d-4}} O_{i}^{d}$ (for d>4)

• First lepton number conserving order: d=6

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\overline{c_i}}{\Lambda^2} O_i$$

• Only ratio $c_i = \frac{\bar{c_i}}{\Lambda^2}$ is accessible in low-energy experiments arXiv:1709.06492

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient
O_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu uA}$	ggF	c _{HG}
O_{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}
O_{HW}	$H^{\dagger}HW^{l}_{\mu u}W^{\mu ul}$	VBF, WH, ZH, HZZ	C _{HW}
O_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HB}
O_{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient
O _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u A}$	ggF	C _{HG}
O _{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}
O_{HW}	$H^{\dagger}HW^{l}_{\mu u}W^{\mu ul}$	VBF, WH, ZH, HZZ	с _{НW}
O_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HB}
O_{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient
O _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu uA}$	ggF	C _{HG}
O _{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}
O_{HW}	$H^{\dagger}HW^{l}_{\mu u}W^{\mu ul}$	VBF, WH, ZH, HZZ	c _{HW}
O_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HB}
O_{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient
O _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u A}$	ggF	C _{HG}
O _{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}
O_{HW}	$H^{\dagger}HW^{l}_{\mu u}W^{\mu ul}$	VBF, WH, ZH, HZZ	C _{HW}
O_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HB}
O _{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient	
O_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu uA}$	ggF	C _{HG}	Ģ
O _{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}	
O _{HW}	$H^{\dagger}HW^{l}_{\mu\nu}W^{\mu\nu l}$	VBF, WH, ZH, HZZ	C _{HW}	
O _{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	VBF, ZH, HZZ	с _{нв}	q
O _{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}	

• Relevant CP-even Operators for $H \rightarrow ZZ \rightarrow 4\ell$ in SMEFT:

Operator	Expression	Interaction vertex	Wilson coefficient
O _{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{\mu u A}$	ggF	C _{HG}
O_{uH}	$H^{\dagger}H\overline{q}_{p}u_{r}\widetilde{H}$	ttH	C _{uH}
O _{HW}	$H^{\dagger}HW^{l}_{\mu u}W^{\mu ul}$	VBF, WH, ZH, HZZ	C _{HW}
O_{HB}	$H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$	VBF, ZH, HZZ	C _{HB}
O _{HWB}	$H^{\dagger}H\tau^{l}W^{l}_{\mu u}B^{\mu u}$	VBF, ZH, HZZ	C _{HWB}

EFT Interpretation of SM Coupling Analysis

• Use STXS coupling measurements to constrain EFT parameters using SMEFT

EFT Interpretation of SM Coupling Analysis

• Use STXS coupling measurements to constrain EFT parameters using SMEFT

• Parametrise $\sigma \times BR$ in each STXS bin as a function of EFT parameters

EFT Interpretation of SM Coupling Analysis

• Use STXS coupling measurements to constrain EFT parameters using SMEFT

• Parametrise $\sigma \times BR$ in each STXS bin as a function of EFT parameters

• Parametrise independently production and decay

Parametrisation of Production Cross Section

• Matrix element:

$$\mathcal{M}_{Mix} = \mathcal{M}_{SM} + c \cdot \mathcal{M}_{BSM}$$

28.03.2019

 $|\mathcal{M}_{Mix}|^2 = |\mathcal{M}_{SM}|^2 + c \cdot 2\Re(\mathcal{M}_{SM}^*\mathcal{M}_{BSM}) + c^2 \cdot |\mathcal{M}_{BSM}|^2$

Parametrisation of Production Cross Section

• Squared matrix element:

• Matrix element:

$$\mathcal{M}_{Mix} = \mathcal{M}_{SM} + c \cdot \mathcal{M}_{BSM}$$

28.03.2019

$\mathcal{M}_{Mix} = \mathcal{M}_{SM} + c \cdot \mathcal{M}_{BSM}$

• Squared matrix element:

• Matrix element:

 $|\mathcal{M}_{Mix}|^2 = |\mathcal{M}_{SM}|^2 + c \cdot 2\Re(\mathcal{M}_{SM}^*\mathcal{M}_{BSM}) + c^2 \cdot |\mathcal{M}_{BSM}|^2$

• Cross section can be separated into three parts:

 $\sigma = \sigma_{\rm SM} + \sigma_{\rm INT} + \sigma_{\rm BSM}$

Parametrisation of Production Cross Section

• Matrix element:

$$\mathcal{M}_{Mix} = \mathcal{M}_{SM} + c \cdot \mathcal{M}_{BSM}$$

• Squared matrix element:

 $|\mathcal{M}_{Mix}|^2 = |\mathcal{M}_{SM}|^2 + c \cdot 2\Re(\mathcal{M}_{SM}^*\mathcal{M}_{BSM}) + c^2 \cdot |\mathcal{M}_{BSM}|^2$

• Cross section can be separated into three parts:

 $\sigma = \sigma_{\rm SM} + \sigma_{\rm INT} + \sigma_{\rm BSM}$

• Cross section dependence on the couplings:

$$\frac{\sigma}{\sigma_{SM}} = 1 + \sum_{i} A_i c_i + \sum_{ij} B_{ji} c_i c_j$$

Example: 2 Wilson Coefficients

• Cross section parametrisation:

$$\sigma/\sigma_{SM} = 1 + A_1c_1 + B_{11}c_1^2 + A_2c_2 + B_{22}c_2^2 + B_{12}c_1c_2$$

• SM, A_i and B_{ij} for i=j can be obtained directly in MadGraph5:

NP^2==0 (SM):
$$\sigma = SM$$
NP^2==1 (interference): $\sigma_{A1} \Rightarrow A_1c_1$ $\sigma_{A2} \Rightarrow A_2c_2$ NP^2==2 (pure BSM): $\sigma_{B11} \Rightarrow B_{11}c_1^2$ $\sigma_{B22} \Rightarrow B_{22}c_2^2$

Example: 2 Wilson Coefficients

• Cross section parametrisation:

$$\sigma/\sigma_{SM} = 1 + A_1c_1 + B_{11}c_1^2 + A_2c_2 + B_{22}c_2^2 + B_{12}c_1c_2$$

- SM, A_i and B_{ij} for i=j can be obtained directly in MadGraph5:
 - $$\begin{split} &\mathsf{NP^{2}==0}\;(\mathsf{SM})\colon \qquad \sigma = \mathsf{SM} \\ &\mathsf{NP^{2}==1}\;(\text{interference})\colon \quad \sigma_{\mathsf{A1}} \Rightarrow \mathsf{A_1c_1} \qquad \sigma_{\mathsf{A2}} \Rightarrow \mathsf{A_2c_2} \\ &\mathsf{NP^{2}==2}\;(\text{pure BSM})\colon \qquad \sigma_{\mathsf{B11}} \Rightarrow \mathsf{B_{11}c_1^2} \qquad \sigma_{\mathsf{B22}} \Rightarrow \mathsf{B_{22}c_2^2} \end{split}$$

Example: 2 Wilson Coefficients

• Cross section parametrisation:

$$\sigma/\sigma_{SM} = 1 + A_1c_1 + B_{11}c_1^2 + A_2c_2 + B_{22}c_2^2 + B_{12}c_1c_2$$

• SM, A_i and B_{ij} for i=j can be obtained directly in MadGraph5:

$$\begin{split} \mathsf{NP^{2}==0} \ (\mathsf{SM}): & \sigma = \mathsf{SM} \\ \mathsf{NP^{2}==1} \ (\text{interference}): & \sigma_{A1} \Rightarrow \mathsf{A}_{1}\mathsf{c}_{1} & \sigma_{A2} \Rightarrow \mathsf{A}_{2}\mathsf{c}_{2} \\ \mathsf{NP^{2}==2} \ (\text{pure BSM}): & \sigma_{B11} \Rightarrow \mathsf{B}_{11}\mathsf{c}_{1}^{2} & \sigma_{B22} \Rightarrow \mathsf{B}_{22}\mathsf{c}_{2}^{2} \end{split} \qquad \begin{split} & \mathsf{A}_{i} = \frac{\sigma_{Ai}(\mathsf{c}_{i}=1,\mathsf{c}_{j}=0)}{\sigma_{SM}} \\ & \mathsf{B}_{ii} = \frac{\sigma_{Bii}(\mathsf{c}_{i}=1,\mathsf{c}_{j}=0)}{\sigma_{SM}} \end{split}$$

• Extracting B_{ij} for i≠j: generate sample with NP^==2 and both couplings set

 $\sigma_{B12} = B_{11}c_1^2 + B_{22}c_2^2 + B_{12}c_1c_2$

$$B_{ij} = \frac{\sigma_{Bij}(c_i = 1, c_j = 1) - \sigma_{Bii}(c_i = 1, c_j = 0) - \sigma_{Bjj}(c_i = 0, c_j = 1)}{\sigma_{SM}}$$

→Subtract quadratic terms

28.03.2019

Sample Production

- Simulation with MadGraph and showering with Pythia
- 500k events per sample
- CKKW matching for processes with different jet multiplicities
- Samples are analysed on truth level to get the fraction of the cross section in STXS bins

Production	MadGraph Syntax	Number of samples
ggH+bbH	define jb = j b b~	3
	generate p p > h QED=1	
	add process p p > h j QED=1	
	add process p p > h jb jb QED=1	
VBF+VH-Had	generate p p > h j j QCD=0	10
ZH-Lep	generate p p > h l+ l-	10
WH-Lep	generate p p > h l+ v	3
	add process p p > h l- vl~	
ttH	generate p p > h t t~	3

Parametrisation for ggF

• Dependence of c_{HG} on the cross section ratio:

• Similar dependence in all STXS bins (quadratic terms negligible)

Parametrisation for ttH

• Dependence of c_{uH} on the cross section ratio:

STXS bin	EFT Parametrisation	Expected SM result (140 fb ⁻¹)
ttH	$1 - 0.119c_{uH} + 0.004c_{uH}^2$	$1.00^{+1.13}_{-0.79}$
	Ι	1

• Quite linear dependence (quadratic terms negligible)

c_{HW} largest dependence (others small dependence → see Backup)

• Dependence of C_{HW} on the cross section ratio:

Parametrisation for VBF+VH-Had and VH-Lep

- Plans for Run II Analysis:
 - Constrain CP-even EFT parameters sensitive to Higgs boson production and decay in the H → ZZ → 4ℓ decay channel (SMEFT)
 - EFT interpretation on top of the SM simplified template cross sections coupling Analysis
- So far:
 - First parametrisation of the production bins
- Next steps:
 - Parametrisation of the decay
 - Derive first limits

BACKUP

SMEFT

• Explicit definition of the \mathcal{L}_6 operators (non-fermion):

	$1:X^3$	2 :	H^6		$3:H^4$	$^{4}D^{2}$	5 :	$\psi^2 H^3 + \text{h.c.}$
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_H ($(H^{\dagger}H)^3$	$Q_{H\Box}$	$(H^{\dagger}H$	$H)\Box(H^{\dagger}H)$	Q_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$			Q_{HD}	$\left(H^{\dagger}D^{\mu} ight)$	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(ar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$						Q_{dH}	$(H^{\dagger}H)(ar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$							
	$4: X^2 H^2$	($\delta:\psi^2XH$	+ h.c.		7	$V:\psi^2 H^2 H^2$	D
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e$	$(e_r)\tau^I HW$		$Q_{Hl}^{\left(1 ight)}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u})$	$^{ u}e_{r})HB_{\mu r}$	ν	$Q_{Hl}^{\left(3 ight)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(ar{l}_{\mu}H)(ar{l}_{p} au^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$	Q_{uG}	$\left \left(\bar{q}_p \sigma^{\mu u} T \right) \right $	$(\Gamma^A u_r) \widetilde{H} C$	$\sigma^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(ar{e}_p\gamma^{\mu}e_r)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	Q_{uW}	$\left \left(\bar{q}_p \sigma^{\mu u} v \right) \right $	$(u_r) au^I \widetilde{H} W$	$_{\mu u }^{TI}$	$Q_{Hq}^{\left(1 ight)}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p\sigma^{\mu u}$	$^{ u}u_r)\widetilde{H}B_{\mu}$	ν	$Q_{Hq}^{\left(3 ight) }$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu u})$	$(\Gamma^A d_r) H G$	$\sigma^A_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$(\bar{u}_p \gamma^\mu u_r)$
Q_{HWB}	$H^{\dagger} au^{I} H W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} \sigma^{\mu\nu} \sigma^{$	$(d_r) au^I H W$	$_{\mu u }^{TI}$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$({ar d}_\mu H) ({ar d}_p \gamma^\mu d_r)$
$Q_{H\widetilde{W}B}$	$H^{\dagger} au^{I}H\widetilde{W}^{I}_{\mu u}B^{\mu u}$	Q_{dB}	$(ar{q}_p\sigma^{\mu u}$	$^{ u}d_r)HB_{\mu}$	ν	$Q_{Hud}+{ m h.c.}~igg $	$i(\widetilde{H}^{\dagger} L$	$(\bar{u}_p\gamma^\mu d_r)$
		Verena	Walbrech	t - HZZ Ten	sor Couplin	י וg		

Introduction: SMEFT

- SMEFTsim package: https://feynrules.irmp.ucl.ac.be/wiki/SMEFT
- SMEFTsim adopts the Warsaw basis arXiv:1008.4884

Case	CP even	CP odd	WHZ Pole parameters
General SMEFT (n _f =1)	53	23	~ 23
General SMEFT (n _f =3)	1350	1149	~ 46
U(3) ⁵ SMEFT	~ 52	~ 17	~ 24
MFV SMEFT	~ 108	-	~ 30

 The U(3)⁵ flavour symmetric case, with non-SM CP-violating phases in Mw-scheme: {m_w, m_z, G_f}:

SMEFTsim_A_U35_MwScheme_UFO_v2_1

Verena Walbrecht - HZZ Tensor Coupling

Parametrisation for VBF and VH-Had

• Dependence of c_{HB} on the cross section ratio:

STXS bin	EFT Parametrisation
VBF-p _{T,j} -Low	$\begin{array}{l} 1+0.138c_{HW}+0.093c_{HW}^2+0.004c_{HB}\\ +\ 0.021c_{HB}^2+0.043c_{HWB}+0.016c_{HWB}^2\\ +\ 0.012c_{HW}c_{HB}-0.008c_{HW}c_{HWB}\\ -\ 0.018c_{HB}c_{HWB} \end{array}$
VBF-p _{T,j} -High	$\begin{array}{l} 1-0.157c_{HW}+0.0784c_{HW}^2+0.003c_{HB}\\ +\ 0.077c_{HB}^2+0.0049c_{HWB}+0.0067c_{HWB}^2\\ +\ 0.017c_{HW}c_{HB}-0.056c_{HW}c_{HWB}\\ -\ 0.029c_{HB}c_{HWB} \end{array}$

Small dependence on c_{HB} and c_{HWB}

Parametrisation for VBF and VH-Had

• Dependence of c_{HWB} on the cross section ratio:

STXS bin	EFT Parametrisation
VBF-p _{T,j} -Low	$\begin{array}{l} 1+0.138c_{HW}+0.093c_{HW}^2+0.004c_{HB}\\ +\ 0.021c_{HB}^2+0.043c_{HWB}+0.016c_{HWB}^2\\ +\ 0.012c_{HW}c_{HB}-0.008c_{HW}c_{HWB}\\ -\ 0.018c_{HB}c_{HWB} \end{array}$
VBF-p _{ī,j} -High	$\begin{split} &1-0.157c_{HW}+0.0784c_{HW}^2+0.003c_{HB}\\ &+0.077c_{HB}^2+0.0049c_{HWB}+0.0067c_{HWB}^2\\ &+0.017c_{HW}c_{HB}-0.056c_{HW}c_{HWB}\\ &-0.029c_{HB}c_{HWB} \end{split}$

Small dependence on c_{HB} and c_{HWB}

Parametrisation for VH-Lep

• Dependence of c_{HB} on the cross section ratio:

STXS bin	EFT Parametrisation
VH-Lep	$\begin{array}{l} 1+0.823c_{HW}+0.324c_{HW}^2+0.035c_{HB}\\ +\ 0.011c_{HB}^2+0.127c_{HWB}+0.025c_{HWB}^2\\ -\ 0.221c_{HW}c_{HB}-0.156c_{HW}c_{HWB}\\ +\ 0.021c_{HB}c_{HWB} \end{array}$

• c_{HW}: largest dependence

Parametrisation for VH-Lep

• Dependence of c_{HWB} on the cross section ratio:

STXS bin	EFT Parametrisation
VH-Lep	$\begin{array}{l} 1+0.823c_{HW}+0.324c_{HW}^2+0.035c_{HB}\\ +\ 0.011c_{HB}^2+0.127c_{HWB}+0.025c_{HWB}^2\\ -\ 0.221c_{HW}c_{HB}-0.156c_{HW}c_{HWB}\\ +\ 0.021c_{HB}c_{HWB} \end{array}$

• c_{HW}: largest dependence

Parametrisation for VBF and VH-Had

• Dependence of c_{HW} on the cross section ratio:

Larger sensitivity in the p_{T,i}-High bin

Parametrisation for VH-Lep

• Dependence of c_{HW} on the cross section ratio:

• c_{HW}: largest dependence