Commissioning of the BIS 78 sMDT chambers for the upgrade of the ATLAS muon spectrometer

Šejla Hadžić

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Motivation

BIS-78 sMDT (small-diameter Muon Drift Tubes)

16 new sMDT chambers will be installed in the inner barrel layer in the LHC's second long shutdown.

Schematic view of a BIS sMDT chamber

Working principle

Muon ionises the atoms of the gas

- Drift of the electrons to the anode wire
- Creation of the avalanche close to the wire

Туре	sMDT
Gas mixture	<i>Ar</i> : <i>CO</i> ₂ (93:7)
Gas pressure	3 bar (abs.)
Gas gain	20000
Wire potential	2730 V

BIS-78 sMDT (small-diameter Muon Drift Tubes)

- 8 layers of tubes organised in 2 multilayers
- Measurement of the electron drift time
- Conversion of the drift time to the drift radius
- Reconstruction of the muon trajectory

Cosmic - ray test stand

Test stand

Readout electronics

Measured quantities

- Noise level measurement
- Spatial resolution of the chamber
- Muon detection efficiency

Tested chambers

3/16

Noise level measurements

Noise levels measurements are determined as a function of a different threshold.

Off - chamber measurement

• Each mezzanine card is tested in a box

On- chamber measurement

 Noise levels of each card on - chamber compared with the results from the off - chamber measurement

Noise level measurements

ATLAS settings have higher effective threshold compared to the default settings

• On chamber, HV ON; Off - chamber test, HV ON

• Average noise levels for ATLAS settings 0.26kHz/tube

Spatial resolution determination

$$\sigma = \sqrt{Var(\delta)} = \sqrt{Var(r_k - d_k)}$$

For the track passing vertically

$$\sigma(r_2 - r_1)/\sqrt{2}$$

For the tracks with inclination

$$\sigma \Big(r_2 - r_1 \mp \frac{m}{\sqrt{1 + m^2}} (z_2 - z_1) \Big) / \sqrt{2} \qquad |m| < 0.01$$

Spatial resolution

- All tested chambers have same spatial resolution
- Determined resolution in agreement with MC prediction

ATLAS settings have higher effective threshold compared to default settings
Spatial resolution sightly better default settings

Maximum drift time

A8

Drift time spectrum

Maximum drift time

A8

No outliers in the distribution - all tubes have same space drift - time relationship

9

Muon detection efficiency determination

The muon detection efficiency can be determined for every tube.

- Muon track is reconstructed by excluding one layers of tubes.
- Check if the tube crossed by reconstructed track in excluded layer has a hit

Muon detection efficiency determination

The muon detection efficiency can be determined for every tube.

- Muon track is reconstructed by excluding one layers of tubes.
- Check if the tube crossed by reconstructed track in excluded layer has a hit
- Repeat same process for every tube layer.

Muon detection efficiency determination

The muon detection efficiency can be determined for every tube.

- Muon track is reconstructed by excluding one layers of tubes.
- Check if the tube crossed by reconstructed track in excluded layer has a hit
- Repeat same process for every tube layer.

• Tube efficiency in the first layer

Muon detection efficiency

- Dependency of the muon detection efficiency on the applied high voltage was tested
- Multilayer 1: +2730 V (Operational voltage)
- Multilayer 2: Applying voltages from +2160 V to +2770 V
- For each voltage cosmic ray data were taken

Muon detection efficiency

- Dependency of the muon detection efficiency on the applied high voltage was tested
- Multilayer 1: +2730 V (Operational voltage)
- Multilayer 2: Applying voltages from +2160 V to +2770 V
- For each voltage cosmic ray data were taken

Efficiency vs. HV

Efficiency plateau region

Efficiency vs. HV

- **Close to the tube wall**: Not enough primary ionisation electrons to cross threshold
- Close to the wire: Primary ionisation clusters do not arrive at the same time
 Effect larger at lower wire potential. G (2570 V) = 0.5 G (2730 V)

Summary

Tested chambers fulfill the requirements:

- Low noise rate counts
- Expected spatial resolution
- Muon detection efficiency and maximum drift time distribution shows that performance of the chamber is uniform

Summary

Tested chambers fulfill the requirements:

- Low noise rate counts
- Expected spatial resolution
- Muon detection efficiency and maximum drift time distribution shows that performance of the chamber is uniform

Thank you!

Efficiency plateau region

