

Fake-background estimation for the search for supersymmetry in multileptonic final states with the ATLAS detector

Marian Rendel

Max Planck Institute for Physics (Werner-Heisenberg-Institut)

Thursday 28th March, 2019

Search for Supersymmetry in Final states with four leptons

R-parity violating (RPV) SUSY

General Gauge Mediated (GGM) SUSY

Final states distinguished by hadronic τ multiplicity and the presence or absence of a Z boson

Two types of background:

- Irreducible background:
 - -- Processes with four or more leptons in the final state
 - -- e.g. ZZ, $t\bar{t}Z$, VVZ (V = Z, W)
 - -- Estimated from Monte Carlo simulation
- Reducible background:
 - -- Processes with at least one fake lepton
 - -- Estimated with data-driven fake-factor method
 - -- e.g. *tt*, *Z*+jets
 - -- dominating background in regions with τ s

Why not using Monte Carlo simulation for the fake lepton background?

- Iow statistics
- bad modeling of fake leptons

To increase statistic:

Use control regions with one or two loose leptons (lepton failing a signal selection criteria).

$$\textit{N}_{\rm SR}^{\textit{SM,reducible}} = (\textit{N}_{\rm CR1}^{\textit{data}} - \textit{N}_{\rm CR1}^{\textit{SM,irreducible}})\textit{F} - (\textit{N}_{\rm CR2}^{\textit{data}} - \textit{N}_{\rm CR2}^{\textit{SM,irreducible}})\textit{F}_{1}\textit{F}_{2}$$

- Fakefactor: $F \approx \frac{N_{signal}}{N_{loose}}$
- CR1: Region with 1 loose lepton (most likely a fake lepton)
- CR2: Region with 2 loose leptons

Fake factor *F* depends on process ($t\bar{t}$, *Z*+jets) and fake type

The Fake factor method

$$N_{SR}^{SM,reducible} = (N_{CR1}^{data} - N_{CR1}^{SM,irreducible})F - (N_{CR2}^{data} - N_{CR2}^{SM,irreducible})F_1F_2$$

The final Fake factor is the weighted average over all fake types and

processes

$$extsf{F}^\ell = \sum_{i,j} (extsf{f}^{ij} imes extsf{s}^{ij} imes extsf{F}^{ij})$$

$$F^{ij} = rac{N_{signal}}{N_{loose}}$$
: Fake factor

- estimated from MC
- independent from the region (no need for four leptons)

$$st^{i} = rac{F_{data}}{F_{MC}}$$
: Scale factor

- Correct data to MC
- measured in a region enriched with a certain fake type
- f^{ij}: Process fraction
- Fraction of each contributing fake type and process
- estimated from MC
- dependent on the contro lregion

Fake type

Fake leptons are distinguished by the fake origin

- light flavor (LF) jets
 - -- hadrons misidentified as leptons
- heavy flavor (HF) jets
 - -- leptons originating from leptonic decays of heavy hadrons
 - -- real leptons but not originating from the primary process
- Conversion
 - -- electrons only
 - -- originating from photons decaying into e⁺e⁻ (one is not reconstructed)
- Gluon jets
 - -- au only
 - -- Gluon jet reconstructed as au

Concentrating on τ s for this talk

Fake τ from light flavor jets.

1-prong au

Process: Z+jets

Process: tt

 $F = rac{N_{signal}}{N_{loose}}$

similar behavior for fake τ from $t\bar{t}$ and Z+jets

Fake τ from light flavor jets.

3-prong au

Process: Z+jets

Process: tt FakeFactor 0.12 ATLAS work in progress 0. 0.08

$$F = rac{N_{signal}}{N_{loose}}$$

Iower fake factor for 3-prong au

Fake τ from heavy flavor jets.

1-prong au

Process: Z+jets

Process: tt

 $F = rac{N_{signal}}{N_{loose}}$

similar behavior for fake τ from $t\bar{t}$ and Z+jets

Fake τ from heavy flavor jets.

3-prong au

Process: Z+jets

Process: tt

Iower fake factor for 3-prong au

Fake τ from gluon jets.

1-prong au

Process: Z+jets

Fake τ from gluon jets.

3-prong τ

Process: Z+jets

Process: *t*t

Iower fake factor for 3-prong au

Scale factor

Fake factors are corrected to data to account for mismodeling $F^{\ell} = \sum_{i,j} (f^{ij} \times sf^i \times F^{ij})$

 $sf = \frac{F_{data}}{F_{MC}}$

The scale factor (sf) for LF fake τ estimated in a $Z\mu\mu$ region:

- $N_{\mu} = 2$
- $q_{\mu\mu} = 0$
- $61 < m_{\mu\mu} < 121 \text{ GeV}$
- $N_{ au} = 1$ (loose or signal)
- high purity in Z+jets events
- bad modeling of fake τp_{T}

Fake factor calculated for Data and MC in the ${\it Z}\mu\mu$ region

The scale factor (*sf*) for HF fake τ estimated in a $t\bar{t}$ region:

- $N_{\mu} = 1$
- $q_{e\mu} = 0$
- $N_{bjet} \ge 1$
- $N_{ au} = 1$ (loose or signal)
- high purity in tt events
- bad modeling of fake $\tau p_{\rm T}$

Fake factor calculated for Data and MC in the $t\bar{t}$ region

The fake factor for the different fake types have to be weighted with the fraction of each fake type in the Control regions:

$$F^{\ell} = \sum_{i,j} (f^{ij} \times sf^{i} \times F^{ij})$$

Process: *Z*+jets

3-prong τ

The fake factor for the different fake types have to be weighted with the fraction of each fake type in the Control regions:

 $F^{\ell} = \sum_{i,j} (f^{ij} \times sf^{i} \times F^{ij})$ Process: $t\bar{t}$

3-prong τ

- fake leptons are an important background contribution for the search for SUSY in four lepton final states
- Due to low statistics and bad modeling the analysis can not rely on Monte Carlo
- Data-driven fake factor method used to estimate fake lepton background
- different fake types and processes has to be considered