

Optimization Studies for Direct Stau Pair Production with the ATLAS Detector at $\sqrt{s}=13 { m TeV}$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

2019.03.26 Patrick Selle | Max-Planck-Institute for physics, Munich Supervisor: Zinonas Zinonos

Introduction

Motivation and goal

Physical Motivation

- In many SUSY models the supersymmetric partner of the third lepton generation is the lightest one.
- Co-annihilation between dark matter and a light stau leads to a dark matter relic density consistent with cosmological observations.

RPC simplified model for direct stau pair production.

Goal

 Find the highest possible signal sensitivity by optimizing the event selection.

(First time this study is perfomed)

Benchmark model

- $m(\tilde{\tau}) = 200 \text{ GeV}$
- $\mathsf{m}(\tilde{\chi}_1^0) = 1 \text{ GeV}$

 \rightarrow Sensitivity study based on the full run 2 dataset of 140 fb⁻¹.

Introduction

Lepton-Hadron Final State

Object Selection

- ▶ e: $p_{\rm T} > 15$ GeV, $|\eta| < 2.47$
- ▶ μ : $p_{\rm T} > 25$ GeV, $|\eta| < 2.5$
- $\blacktriangleright \ \tau: \ p_{\rm T} > {\rm 20~GeV}, \ |\eta| < 2.5$
 - $\stackrel{\scriptstyle \downarrow}{}$ Number of tracks = 1,3 (in $\Delta R < 0.2$)

Preselection

- $\blacktriangleright \ \mathit{N}(\tau) = 1 \And \mathit{N}(\ell) = 1$
- $OS(\tau, \ell)$
- b-Jet veto & loose lepton veto
 - ightarrow 0 or 1 jet region with $p_T > 60\,{
 m GeV}$
 - \rightarrow low/high E_T^{miss} region in 0HighJet region

$\tau\text{-pair}$ branching fractions:

Difficulties

- Low signal cross section (~ 200 events after preselection)
- Overwhelming background (~ 2.5 mio. events after preselection)

Introduction

Finding the best cut

For optimization two different measures are under consideration:

```
efficiency separation 1: (1 - \epsilon_b) \times \epsilon_s
```

efficiency separation 2 :
$$\frac{\epsilon_s}{\sqrt{\epsilon_b}}$$

 ϵ_b is the background efficiency in the signal region. ϵ_s is the signal efficiency in the signal region.

Criterion for a Cut:

- maximize efficiency separation 1 or 2.
- Relative statistical error for each background < 50 %.
- Take correlation between different variables into account.

Cut 1: $M_T(\ell, E_T^{miss}) + M_T(\tau, E_T^{miss})$

Cut at:	$\sum M_{T} > 170 GeV$
Expected signal: Expected background: Expected W+jets: Signal reduction: Background reduction:	$ \begin{array}{c} 120.73 \pm 3.26 \\ 177927.23 \pm 3469.58 \\ 152185.41 \pm 2800.21 \ (\sim 85 \%) \\ 1.27 \\ 11.79 \end{array} $

Cut 2: Effective Mass

Cut at:	$ m m_{eff}>350~GeV$
Expected signal: Expected background: Expected W+jets: Signal reduction: Background reduction:	$ \begin{array}{c} 42.2 \pm 1.68 \\ 4811.12 \pm 206.87 \\ 1663.4 \pm 126.98 \ (\sim 34 \ \%) \\ 2.86 \\ 369.55 \end{array} $

Cut 3: Z mass

Cut at:	$\rm m(RJZ) > 300GeV$
Expected signal: Expected background: Expected W+jets: Signal reduction: Background reduction:	$\begin{array}{c} 41.4 \pm 1.64 \\ 3630.36 \pm 199.67 \\ 1218.09 \pm 158.35 \ (\sim 33\%) \\ 1.02 \\ 1.33 \end{array}$

Cut 4: $\Delta \phi(\ell + \tau, \mathsf{E}_\mathsf{T}^{\mathsf{miss}})$

Cut at:	$\Delta \phi(\ell + \tau, E_{T}^{miss}) > 3$
Expected signal: Expected background: Expected W+jets: Signal reduction: Background reduction:	$ \begin{vmatrix} 26.07 \pm 1.21 \\ 1344.33 \pm 165.98 \\ 385.68 \pm 132.46 \ (\sim 26 \ \%) \\ 1.59 \\ 2.7 \end{vmatrix} $

List of Cuts

0HighJet (high E_T^{miss}		0HighJet (low E _T ^{miss}))	1HighJet	
Variable	Cut	Variable	Cut	Variable	Cut
$\begin{array}{l} MT(\tau, E_{\tau}^{\mathrm{miss}}) + MT(\ell, E_{\tau}^{\mathrm{miss}}) \\ m_{eff} \\ M(RJZ) \\ \Delta \phi(\ell, \tau, E_{\tau}^{\mathrm{miss}}) \\ \Delta \pi/(\ell, \tau, E_{\tau}^{\mathrm{miss}}) \\ \Delta R/(\ell, \tau) \\ \rho_{\tau}(\tau) \\ MT_{1}(min) \\ m_{trainat} \\ \mathbb{E}_{\tau}^{\mathrm{miss}} \\ P_{T}(RJW) \\ \mathrm{VecSumPt}(\ell, \tau, \mathbb{E}_{\tau}^{\mathrm{miss}}) \\ \mathrm{VecSumPt}(\ell, \tau, \mathbb{E}_{\tau}^{\mathrm{miss}}) \\ \mathrm{un}, \mathrm{Foc-Wofram Moment} \ 6 \\ \mathrm{un}, \mathrm{Foc-Wofram Moment} \ 4 \\ \Delta \phi(\tau, \xi) \\ \mathbb{E}_{u}^{\mathrm{miss}} \\ \mathrm{significance} \\ \mathrm{un}, \mathrm{Foc-Wofram Moment} \ 9 \end{array}$	$\begin{array}{l} > 170 \; {\rm GeV} \\ > 350 \; {\rm GeV} \\ > 300 \; {\rm GeV} \\ > 3 \\ < 3 \\ < 3 \\ > 50 \; {\rm GeV} \\ > 80 \; {\rm GeV} \\ > 90 \; {\rm GeV} \\ > 120 \; {\rm GeV} \\ > 70 \; {\rm GeV} \\ < 50 \; {\rm GeV} \\ < 100 \; {\rm GeV} \\ < 0.4 \\ < 0.35 \\ = 1.2 \\ > 9 \\ > 0.35 \end{array}$	$ \begin{array}{l} E_{T}^{\min} \\ p_{T}(\tau, E_{T}^{\min}) + MT(\ell, E_{T}^{\min}) \\ MT(\tau, E_{T}^{\min}) \\ \Delta \phi(\tau, \ell) \\ MT_2(\min) \\ m(R \mathcal{W}) \\ Thrust \\ p_{T}(R\mathcal{I}\mathcal{M}) \\ \text{un. Fox-Wofram Moment 7} \\ \text{VecSumPt}(\ell, \tau, E_{T}^{\min}) \end{array} $	<pre>< 120 GeV > 50 GeV > 250 GeV > 80 GeV > 1.5 > 90 GeV > 0.7 > 100 GeV > 0.35 < 90 GeV</pre>	$\begin{array}{l} MT(\tau, \mathbb{F}_{T}^{\min}) + MT(\ell, \mathbb{E}_{T}^{\min}) \\ \mathrm{Errows} \ \mathrm{significance} \\ \mathrm{merr} \\ \Delta \eta(\ell, \tau) \\ \eta(R Z) \\ p(\tau) \\ MT_{2}(\min) \\ \Delta \delta(\ell, \tau) \\ m(R W) \\ MT_{8}(\ell, jet) \\ \mathbb{E}_{T}^{\min} \\ \Delta \eta(\tau, jet) \end{array}$	> 180 GeV > 7 > 350 GeV < 1.4 > 320 GeV > 80 GeV > 80 GeV > 10 GeV > 1 > 120 GeV < 2.2

Summary for
$$\mathsf{m}(\widetilde{ au})=200\,\mathsf{GeV}$$
, $\mathsf{m}(\widetilde{\chi}_1^0)=1\,\mathsf{GeV}$

	0HighJet(high E _T ^{miss})	$0 HighJet(low \ E_T^{miss})$	1HighJet	combined
exp. s	4 ± 0.52	1.93 ± 0.44	2.04 ± 0.43	7.97
exp. b	1.37 ± 1	1.03 ± 1.42	2.24 ± 1.74	4.64
$\frac{s}{\sqrt{b}}$	3.42	1.9	1.36	4.14
σ (stat \oplus 30%)	1.66	0.78	0.71	1.97

	$HighJet(high~E_T^{miss})$	0HighJet(low E _T ^{miss})	1HighJet
W+Jets	0.57	-0.76	0.95
Zll	0	0.03	0
$Z\tau\tau$	0	0	0.02
Тор	0.6	1.98	1.04
Others	0.2	0.05	0.23

Expected Median Significance

Outlook

First attempt to study direct $\tilde{\tau}\text{-pair}$ production in lep-had final state with ATLAS.

Outlook:

- Use tau-lepton triggers in combination with single lepton triggers.
- Split signal region into low E_T^{miss} and high E_T^{miss} region.
- QCD estimation using ABCD method and fake factor method.

End

With special thanks to:

Johannes Josef Junggeburth & Zinonas Zinonos

Patrick Selle (MPP) Stau Studies Introduction Optimization Results Outlook

Input variables of the optimization

Kinematic	
$M_T(\tau, E_T^{miss})$	$M_T(\ell, E_T^{miss})$
$M_T(\ell, E_T^{miss}) + M_T(\tau, E_T^{miss})$	ET
E ^{miss} centrality	E ^{miss} significance
m _{vis}	m _{eff}
$VecSumPt(\ell, \tau)$	$VecSumPt(\ell, \tau, E_T^{miss})$
MT2 _{max}	MT2 _{min}
Angular	
$\sum \Delta \phi(i, E_{T}^{miss}) \ (i = \tau, \ell)$	$\left \sum \Delta \phi(i, E_{T}^{miss})\right (i = \tau, \ell)$
$\overline{\Delta}\phi(\ell,\tau)$	$ \overline{\Delta\eta}(\ell,\tau) $
$\Delta R(\ell, \tau)$	$\cos lpha(\ell, au)$
$\Delta \phi(\ell + \tau, jet)$	$\Delta R(\ell + \tau, jet)$
$\cos \alpha (\ell + \tau, jet)$	$\Delta \phi(\ell + \tau, E_{T}^{miss})$
$\Delta \phi(\ell + \tau + E_{T}^{miss}, jet)$	
Eventshape variables	
Thrust	Planarity
Aplanarity	Sphericity
Unnorm. Fox-Wolfram moment 0-10	
Jicksaw Candidates for $V = W - \&Z - boson$ $(i = \ell, \tau)$	
m(RJV)	$p_T(RJV)$
$\cos \theta^* (RJV)$	dPhiDecayPlane(<i>RJV</i>)
$\Delta \phi(RJV, i)$	$ \Delta \eta(RJV, i) $
$\cos \alpha(RJV, i)$	$\Delta R(RJV, i)$
$\Delta \phi (RJV + i, jet)$	$\Delta R(RJV + i, jet)$
$\cos \alpha (RJV + i, jet)$	$\Delta \phi(RJV + i + E_T^{miss}, jet)$
$\Delta \phi (RJV + i, E_{T}^{miss})$	

Significance computation (Asimov)

$$\sigma = \left[2\left((s+b)\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2s}{b(b+\sigma_b^2)}\right] \right) \right]^{1/2}$$

Computation of centrality for leptons:

centrality
$$(\ell) = \frac{A+B}{\sqrt{A^2+B^2}}$$

with

$$A = \frac{\sin \Delta \phi(\mathsf{E}_T^{miss}, \ell)}{\sin \Delta \phi(\ell, \tau)}$$

$$B = \frac{\sin \Delta \phi(\mathsf{E}_T^{miss}, \tau)}{\sin \Delta \phi(\ell, \tau)}$$

Thrust

The quantity thrust T is defined by

$$T = \max_{|\mathbf{n}|=1} \frac{\sum_{i} |\mathbf{n} \cdot \mathbf{p}_{i}|}{\sum_{i} |\mathbf{p}_{i}|}$$

and the thrust axis \mathbf{v}_1 is given by the **n** vector for which maximum is attained. The allowed range is $1/2 \leq T \leq 1$, with a 2-jet event corresponding to $T \approx 1$ and an isotropic event to $T \approx 1/2$.

Fox-wolfram moments

The Fox-Wolfram moments H_l , l = 0, 1, 2, ..., are defined by

$$H_l = \sum_{i,j} \frac{|\mathbf{p}_i||\mathbf{p}_j|}{E_{vis}^2} P_l(\cos\theta_{ij})$$

where θ_{ij} is the opening angle between hadrons *i* and *j* and E_{vis} the total visible energy of the event. Note that also autocorrelations, i = j, are included. The $P_l(x)$ are the Legendre polynomials. If

momentum is balanced then $H_1 \equiv 0$. 2-jet events tend to give $H_l \approx 1$ for l even and ≈ 0 for l.