A new 3D simulation package for solid-state detectors in Julia - SolidStateDetectors.jl

F. Fischer, L. Hauertmann, X. Liu, O. Schulz, <u>M. Schuster</u>, A. J. Zsigmond

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Deutsche Physikalische Gesellschaft Aachen - 2019

Motivation

Why do we need pulse shape simulation?

- Rare Event Searches: e.g. $0\nu\beta\beta$ decay
- Reduce and identify background events
- Understand your detector
 - Understanding mobilities
 - Temperature dependence of mobilities
 - 0 ...
- \rightarrow Pulse Shape Discrimination

Motivation

1) Background-free search for neutrinoless double-β decay of 76Ge with GERDA - Agostini, M. et al. Nature 544 (2017) 47 arXiv:1703.00570 [nucl-ex]

M Schuster

Why do we need SolidStateDetectors.jl?

- 3D field calculation
 → segmented detectors / crystal axes effects
- Fast field calculation
 → detector design
- Easily configurable parameters
 → fit mobilities and their temperature dependence
- Open source
 - \rightarrow easier development within community

Overview

Human readable input files, e.g. json

```
"bulk_type": "n",
"geometry": {
     "unit": "mm",
     "world": {
           "material": "Vacuum",
           "geometry": [
                 "type": "Tube",
                 "rStart": 0.0,
                 "rStop": 41.0,
                 "phiStart": 0.0,
                 "phiStop": 360.0,
                 "zStart": -3.0,
                 "zStop": 43.0
                 }
     },
     "crystal": {
           "material": "HPGe",
           "geometry": {
            . . .
```

- All parameters of the calculation set in config files (.yaml, .json, ...)
 - Geometry parameters
 - Segmentation
 - Drift model parameters
 - etc.
- No hard-coding
 - Easy to read

Broad range of geometries

Pre-defined geometries

Field calculation

• Electric potential calculated by Gauss' law

$$\nabla(\epsilon_r(\vec{\mathbf{r}})\nabla\varphi(\vec{\mathbf{r}})) = \frac{\rho(\vec{\mathbf{r}})}{\epsilon_0} , \qquad \vec{\mathbf{r}} = (r, \phi, z)$$

 $\varphi(\mathbf{r})$ electric potential, ϵ_0 vacuum permittivity, $\epsilon_r = 16$ dielectric constant of germanium, $\rho(\mathbf{r})$ impurity density

Weighting potential calculated by Gauss' law

$$\nabla(\epsilon_r(\vec{\mathbf{r}})\nabla\varphi_W(\vec{\mathbf{r}})) = 0$$

with the boundary conditions that the weighting potential equals unity on the considered electrode and zero otherwise

Field calculation

• Adaptive grid \rightarrow save computation time

• Julia \rightarrow easy to vectorize loops (AVX/AVX2) \rightarrow speed up

https://software.intel.com/en-us/articles/vectorization-in-julia

• Successive over-relaxation (SOR) \rightarrow fast convergence

https://people.eecs.berkeley.edu/~demmel/cs267-1995/lecture24/lecture24.html

https://people.eecs.berkeley.edu/~demmel/cs267-1995/lecture24/lecture24.html

Electric Potential Calculation

Weighting Potentials

M Schuster

Drift velocity model

• Parallel to the principal crystal axis the drift velocity is parallel to the electric field

$$v_l = \frac{\mu_0 E}{(1 + (E/E_0)^{\beta})^{1/\beta}} - \mu_n E$$

- μ_0 , E_0 , β and μ_n parameters different for electrons and holes and for <100> and <111> axes
- Different models for electrons and holes implemented from
 [1] B. Bruyneel et al., NIM A 569 (2006) 764
 also used by e.g. AGATA
- Between these axes the drift velocity is more complicated

Drift velocity model

Electron Drift Velocity Field

M Schuster

Charge drift and core signal

Drift path $\mathbf{x}(t) = \mathbf{x}(t-\Delta t) + \mathbf{v}(\mathbf{x}(t-\Delta t))\cdot\Delta t$ Induced charge (Shockley-Ramo theorem) Q(t) = $-q \cdot [\Phi_w(\mathbf{x}_h(t)) - \Phi_w(\mathbf{x}_e(t))]$

Signal and mirror pulses in segments

M Schuster

Summary and outlook

• Official Julia Package

- Configurable geometry and drift parameters
- Fast field calculation (3D; Also simulates environment)
- Charge drift model takes care of crystal axes effects
- Segmentation
- Next release (~ Easter)
 - Cartesian Coordinates
 - Geometry Primitives closer to GEANT4
- To do
 - Temperature dependence
 - Charge clouds; diffusion

