

Analysis of GERDA detector surface events with deep learning algorithms

Peter Kicsiny

for the GERDA collaboration

26.03.2019

Aachen

The GERDA experiment

- Search for the neutrinoless double beta $(0\nu\beta\beta)$ decay
- Located in Gran Sasso National Laboratory in Italy
- Water tank + LAr for background reduction

GERDA detectors

• 40 HPGe detectors enriched in ⁷⁶Ge

- Readout on the p+ electrode
- Analysis for each detector

Motivation

- Clear measurement requires background reduction
- 42 K β^- decay (Q_{β}=3.5 MeV) leads to background around Q_{$0\nu\beta\beta$}=2039 keV
- β particles deposit energy near detector surface
- Separation of surface events

Idea: deep neural networks

- Clean ³⁹Ar e⁻ spectrum below 400 keV
 - Surface events

Idea: deep neural networks

- Clean ³⁹Ar e⁻ spectrum below 400 keV
 - Surface events
- Clean $2\nu\beta\beta$ e⁻ spectrum after LAr veto
 - Bulk events
- Two steps:
 - extract features
 - ➡ autoencoder
 - surface/bulk classification
 classifier network

Waveform preprocessing

- Input: preprocessed charge pulses
- Baseline substraction
- Energy normalization
- Midpoint alignment

Pulse shape reconstruction with autoencoder

Pulse shape reconstruction with autoencoder

- Extend dataset with pulses from calibration runs
- ~1.000 training parameters
- ~20.000 events for training
- ~7.000 events for validation
- ~7.000 events for testing
- Loss function: MSE between reconstruction and input pulse

Pulse shape reconstruction with autoencoder

³⁹Ar surface event examples

 $2\nu\beta\beta$ examples

Evaluation

Reconstruction error scaled down by baseline noise RMS

errors to check quality of reconstructions

Next steps

- Neural network for classification
- 2 categories:
 - Surface: ³⁹Ar (50-400 keV)
 - Bulk: 2νββ (600-1300 keV)
- Input: encoded latent representations
 - Fewer training parameters
 - Encoding does not memorize high frequency noise
 - Classification uses extracted dominant features

Conclusions & summary

• Low energy event reconstruction with autoencoder has promising results

• Idea of classification on latent space is advantageous

• Analysis to be performed separately on all detectors

Conclusions & summary

• Low energy event reconstruction with autoencoder has promising results

• Idea of classification on latent space is advantageous

• Analysis to be performed separately on all detectors

