

PXD efficiency and impact parameter resolution in Phase 3 data

Alexander Glazov, Cyrille Praz

27.05.2019

A. Glazov, C. Praz

PXD Workshop: efficiency and resolution

Outline

2 PXD efficiency

- Strategy
- Results
- Impact parameter resolution
 - Strategy
 - Results

Data samples

- Phase 3, experiment 7, runs 3356, 3370, 3372, 3374, 3375.
 - LER beam injection at $\sim 5-6.25\,\mathrm{Hz}.$
- Phase 3, experiment 8, runs 367, 1037.
 - Continuous LER injection.
 - Integrated efficiency drop for run 367 (• Jira ticket).

Reconstruction

• Release 03-01-02 of basf2.

• Recommended global tags for SVD reconstruction (often updated).

- basf2.use_central_database("data_reprocessing_prompt")
- basf2.use_central_database("svd_basic")
- basf2.use_central_database("svd_loadedOnFADC")
- basf2.use_central_database("svd_offlineCalibrations")
- Output: tracking validation ntuples (1 row = 1 track).

Outline

2 PXD efficiency

- Strategy
- Results
- 3 Impact parameter resolution
 - Strategy
 - Results

Status and outlook

Estimate of the PXD efficiency

- Select tracks coming from the IP and detected by the outer detectors (SVD and CDC).
- Efficiency estimate = $\frac{\# \text{ selected tracks with } \# PXD \text{ hits } \ge 1}{\text{total } \# \text{ selected tracks}}$.
- This estimate is a function of the intrinsic PXD efficiency and the matching efficiency.
- Projection on the ϕ_0 -tan (λ) plane.

• $\lambda \equiv \frac{\pi}{2} - \theta$: angle between a track and the plan \perp to the beam.

Track-based selection for PXD efficiency study

• Look for tracks detected in the SVD coming from Bhabha events.

Variable	Requirement	Unit
<i>d</i> ₀	< 3	mm
$ z_0 $	< 1	cm
# selected tracks in the event	= 2	
$ ho_{ m T}$	> 0.6	${ m GeV}/c$
# selected tracks in the event	= 2	
# CDC hits	\geq 10	
# SVD hits	\geq 6	

PXD efficiency (experiment 7, runs 3356-3375)

PXD efficiency (experiment 8, run 1037)

PXD efficiency (experiment 8, run 367)

PXD efficiency

Results

PXD efficiency vs tan(λ) (experiment 7, runs 3356-3375)

First PXD hit in L1 or L2.

A. Glazov, C. Praz

PXD Workshop: efficiency and resolution

PXD efficiency

Results

PXD efficiency vs tan(λ) (experiment 8, run 1037)

First PXD hit in L1 or L2.

A. Glazov, C. Praz

PXD Workshop: efficiency and resolution

Outline

2 PXD efficiency

- Strategy
- Results

Impact parameter resolution

- Strategy
- Results

Status and outlook

Estimate of the d_0 resolution

- Goal: estimation of the transverse impact parameter (d_0) resolution.
- Select tracks coming from the IP and detected by PXD and SVD.
- width of the d_0 distribution = estimate of the d_0 resolution.
 - (valid if beam size $\ll d_0$ resolution).
- 68% coverage (σ_{68}) : σ chosen so that the interval [Median $(d_0) \sigma$, Median $(d_0) + \sigma$] contains 68% of the distribution.

Track-based selection for d_0 resolution study

Look for tracks detected in the VXD coming from Bhabha events.

Variable	Requirement	Unit
<i>d</i> ₀	< 3	mm
$ z_0 $	< 1	cm
# selected tracks in the event	= 2	
p_{T}	> 1	GeV/c
$ heta-\pi/2 $	< 0.5	
$p\beta\sin(heta)^{3/2}$	> 2	GeV/c
# selected tracks in the event	= 2	
# CDC hits	> 20	
# SVD hits	\geq 6	
# PXD hits	≥ 1	

d_0 and $\sigma(d_0)$ against ϕ_0

- In data, d_0 depends on ϕ_0 , because the center of the beam is not exactly located at the origin.
- Fit $d_0(\phi_0)$ with $A\cos(\phi_0) + B\sin(\phi_0) + C$.
- Correction of the d_0 -offset for each run individually.
- $\sigma(d_0)$ as a function of ϕ_0 exhibits the horizontal beam size.

Comparison with simple model [C. Niebuhr]

• The resolution estimate depends on the intrinsic resolution (σ_i) and the horizontal beam size at the IP (σ_x^*).

• Simple model:
$$\sigma(d_0)(\phi_0) = \sqrt{\sigma_i^2 + (\sin(\phi_0) \cdot \sigma_x^*)^2}$$
.

A. Glazov, C. Praz

Status and outlook

- Many improvements since the very early phase 3 data.
- Calibration constants have not yet fully converged.
- An internal note will be written to present the d_0 resolution study.
 - Comparison with simulation.
 - Goal: public plot by the end of the next B2GM.

Thank you for your attention.

PXD efficiency (experiment 7, runs 3356-3375)

Numerator

Denominator.

