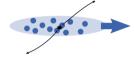
PXD Backgrounds

PXD Workshop and 23rd International Workshop on DEPFET Detectors and Applications

Slavomira Stefkova Seeon, 29.05.2019

Background Sources


Background sources at Belle II in general are:

- > Collision-induced: non-interesting physics processes originating from electron-positron collisions
- > **Beam-induced**: physics processes originating from collisions of particles with beam pipe, magnets or with other particles in a bunch) \rightarrow shown in this presentation

Beam-Induced Backgrounds

Origin of the backgrounds can be traced with single-beam (HER or LER) SuperKEKB runs:

> Touschek scattering \rightarrow Scattering of particles within a bunch

> **Beam-gas scattering**: Coulomb scattering and Bremsstrahlung \rightarrow scattering of the gas molecules

- > Beam-Gas Rate* $\propto N_{gas\ molecules} \times N_{particles} \rightarrow P \times I \times Z_{eff}^2$
- > Touschek Rate* $\propto N_{particles} \times \rho \rightarrow I \times \frac{I}{\sigma_{\text{yn}_{\text{b}}}}$

Heuristic Equation

> Total rate:

$$\mathbf{Rate_{PXD}} = \mathbf{T} \frac{\mathbf{I}^2}{\sigma_{\mathbf{y}} \mathbf{n}_{\mathbf{b}}} + \mathbf{B} \mathbf{Z}_{\mathrm{eff}}^2 \mathbf{IP},$$

with T: Touschek contribution
B: Beam - gas contribution

> Divide through by $\mathbf{Z}_{\mathrm{eff}}^{2}\mathbf{IP}$

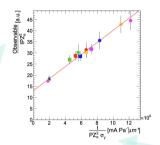
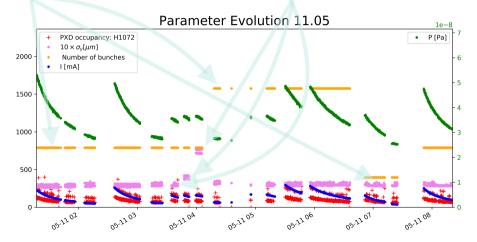


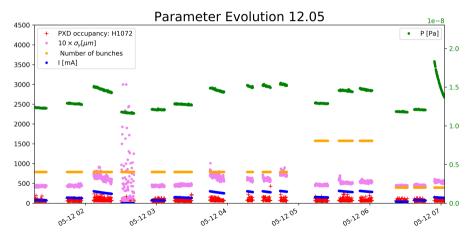
FIGURE: arxiv:1802.01366. Shapes=currents, colors=beam size settings.

$$\frac{\mathbf{Rate_{PXD}}}{\mathbf{Z_{eff}^2IP}} = \mathbf{B} + \mathbf{T} \times \frac{\mathbf{I}}{\sigma_y \mathbf{n_b Z_{eff}P}}$$

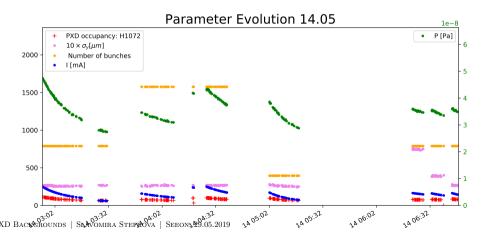

> Straight-line fit with T (slope of the straight line) and B (y-intercept of the straight line)

Data

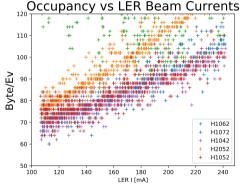
- > LER single beam data: 11.05.2019, 14.05.2019 (narrower collimator settings)
- > HER single beam data: 12.05.2019
- > Data source: EPICS $n_b, \sigma_v, I, Rate_{PXD}$
- $> Z_{eff} = 1.0, 7.0$
- $> P_G$ = average of gauge pressures
- $> P_{cal} = c \times P_G (c-1)P_{base}$, where c = 1.7 and $P_{base} = 1.0e 9$
- > Only matching timestamp data is shown
- > Future plan: cross-check with globally produced calibrated data


11.05.2019 LER single-beam background

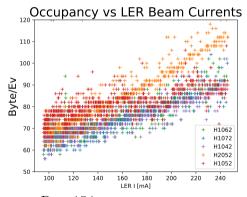
> vary I, n_b , test emittance knob YaECK varying σ_y


12.05.2019 HER single-beam background

> vary I, n_b , test ECK varying σ_y

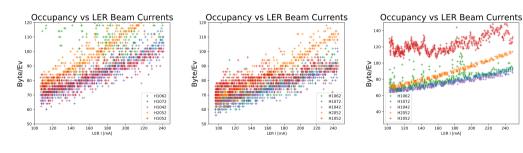

14.05.2019 LER single-beam background (narrower collimator)

> vary I, n_b , test ECK varying σ_y



Narrower D02V1 collimator: 11.05.2019

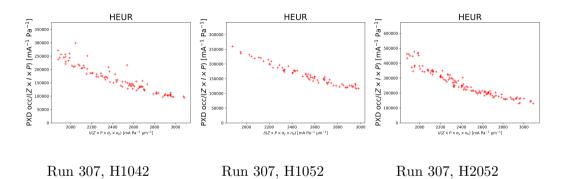
> Poisson, 789 bunches, $I = 240 \rightarrow 100 \text{mA}$


Run 138

Run 154

Narrower collimators: 11.05.2019 and 14.05.2019

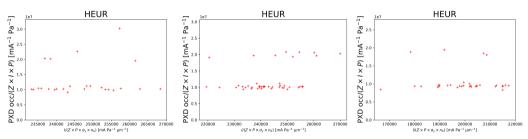
> Poisson, 789 bunches, $I = 240 \rightarrow 100 \text{mA}$



Run 138, 11.05

Run 154, 11.05

Run 307, 14.05

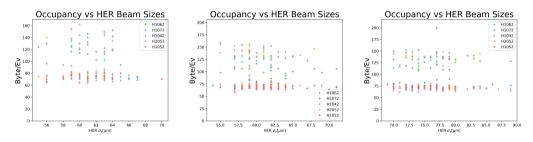

Heuristic Decomposition - LER - Run 307

> The heuristic decomposition does not describe the data

Heuristic Decomposition - HER

> Varying the emmitance knob settings, H1072

Run 202,YaECK=0


Run 203, YaECK=+0.6

Run 204, YaECK=+1.2

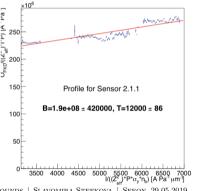
> No slope \rightarrow Beam-Gas contribution only

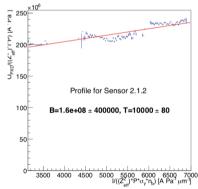
Occupancy and Size of Beam

 \rightarrow Different beam sizes have no implication on occupancy \rightarrow Beam-Gas contribution only

Run 202,YaECK=0

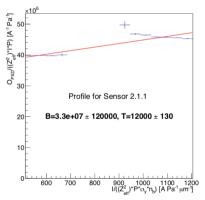
Run 203, YaECK=+0.6 Run 204,YaECK=+1.2

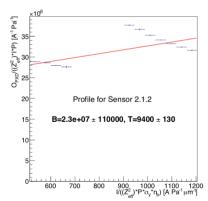

> The heuristic decomposition only points to beam-gas contribution


Phase 3 results

- > Average occupancy is well below the 3%
- > Heuristic model does not fit the data with LER single beams (both 11.05.2015 nor 14.05.2019)
- > HER 12.05.2019: Beam-gas contribution only
- > The effect of vertical collimators on backgrounds is seen
- > Investigate the negative behaviour of the slope

Phase 2 results - Heuristic plots


- > In Phase 2 the background composition has both Touschek and Beam-Gas contribution
- > June 11 HER single beam data



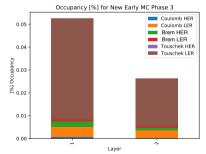
Phase 2 results - Heuristic plots II

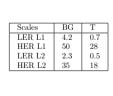
- > June 12 LER single beam data
- > However, negative slope is not something that have not been seen before
- > Valid for Layer 1 and 2

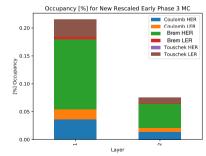
Data-MC agreements for Phase 2

- > Dedicated MC samples produced to make comparative studies
- > For LER single beam runs (June 12, July 16): good agreement

Sensor	B Data/B MC	T Data/T MC
1.1.1	$7.55\pm0.020\pm0.23$	$1.36 {\pm} 0.013 {\pm} 0.83$
1.1.2	$7.06\pm0.019\pm0.079$	$1.39 \pm 0.014 \pm 0.61$
2.1.1	$7.00\pm0.025\pm0.12$	$1.29 \pm 0.015 \pm 0.82$
2.1.2	$4.86 \pm 0.023 \pm 0.33$	$1.07 \pm 0.014 \pm 0.72$

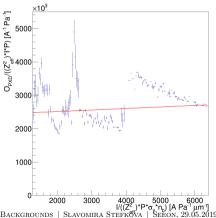

Sensor	B Data/B MC	T Data/T MC
1.1.1	$17.95 \pm 0.019 \pm 0.047$	$2.39 \pm 0.0076 \pm 0.42$
1.1.2	$17.04\pm0.018\pm2.60$	$2.37 \pm 0.0077 \pm 14.00$
2.1.1	$16.57 \pm 0.021 \pm 0.14$	$1.91 \pm 0.0075 \pm 0.43$
2.1.2	$16.19 \pm 0.021 \pm 2.60$	$2.00\pm0.0074\pm13.00$

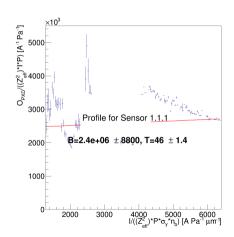

> For HER single beam runs (June 11): not such a good agreement (wrong MC suspected)


Sensor	B Data/B MC	T Data/T MC
1.1.1	$82.54 \pm 0.16 \pm 19$	$47.97 \pm 0.31 \pm 33$
1.1.2	$85.42 \pm 0.17 \pm 0.31$	$52.58 \pm 0.35 \pm 0.67$
2.1.1	$78.88 \pm 0.18 \pm 0.043$	$ 45.41\pm0.32\pm0.48 $
2.1.2	$79.65\pm0.19\pm0.0069$	$45.59 \pm 0.36 \pm 0.55$

Projections

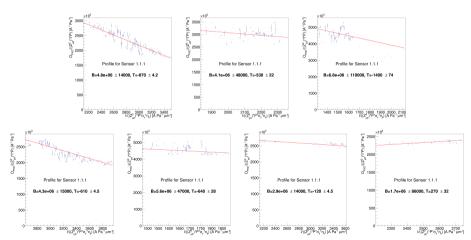
- > Use June LER/HER Data/MC ratios to scale for early Phase 3
- > For both layers: average Data/MC from 2 sensors from June samples
- > For final Phase 3: both currents $\times 3 \rightarrow$ single beam bkg = 2\%
- > + Other backgrounds: two-photon, synchotron

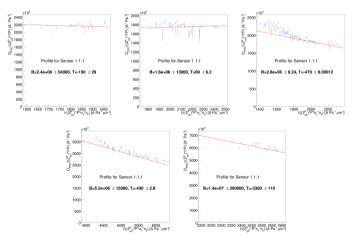

Conclusions


- > First look at Phase 3 single-beam runs
- > Dominated by beam-gas scattering processes
- > Negative slope in LER is not understood \rightarrow needs investigation
- > Look at whether these contributions come from single cluster data or not
- > Systematic effects are being evaluated
- > Phase 2 results are being finalised \rightarrow data is in rather a good agreement with simulation
- > Assuming phase 2 Data/MC agreement, extrapolation to Phase 3 seems safe

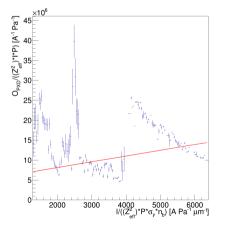
Backup

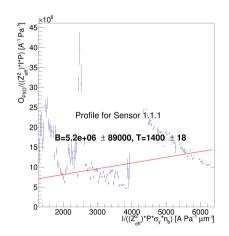
Global Picture


The global picture: run 138-153 for the decomposition does not confirm that the model works

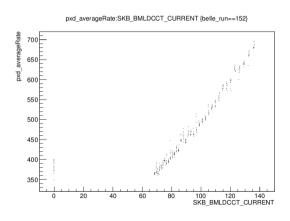

Individual Runs I

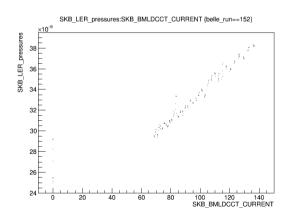
> This is confirmed in individual runs (138-144):

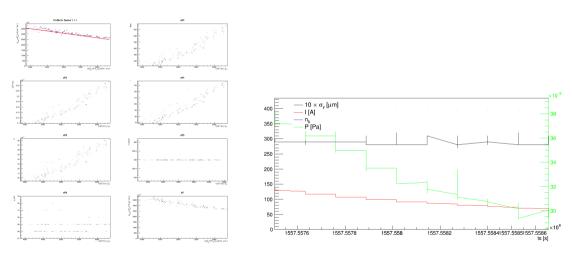

Individual Runs II


> This is confirmed in individual runs (149-153):

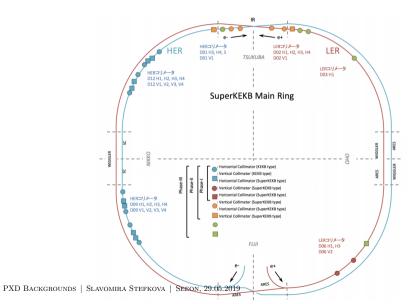
Global Picture for SVD is the same


> Similar behaviour observed for SVD




Detailed Look at Run 152

> The dependency of pressure and the rate on current seems reasonable



Detailed Look at Run 152

Collimators

