UNIVERSITÄT BONN

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

<u>Christian Wessel</u>, <u>Bruno Deschamp</u>s, Jochen Dingfelder, Carlos Marinas

Universität Bonn

STATUS OF DATCON AND HLT ROI CREATION

DEPFET Workshop Seeon, May 2019

HOUGH TRANSFORMATION

UNIVERSITÄT BONN

28.05.201

RESULTS

- Phase 2 (basf2)
- Phase 2 (hardware)

ANGULAR RESOLUTION OF DATCON – PHASE 2

- Distributions of the track parameters found by DATCON
- Hough space for intersection search 64x64 for both Hough spaces
- φ-coverage in Hough space: -37° ... +37°
- θ-coverage in Hough space: 0° ... 180°
- Zickzack-structure caused by discrete Hough space

ANGULAR RESOLUTION OF DATCON – PHASE 2

- Comparison of the reconstructed track parameters with the parameters of the tracks found by the Vertex Detector Track Finder (VXDTF)
- No optimisation of the parameters of the DATCON algorithm
- Angular resolution of about 1° (central region)
- VXDTF found 22999 tracks in this specific run (roughly 1.1M events)
- DATCON in total found more tracks, but only 17633 tracks in events with VXDTF tracks

RESULTS

- Phase 2 (basf2)
- Phase 2 (hardware)

DATCON OPERATION IN PHASE 2

- Difference of the SVD cluster position reconstructed by DATCON compared to the values of the real SVD clusterizer in number of strips
- Plots for u side
- Up: complete strip range, logarithmic y axis
- Down: central region only, contains about 39% of all strips

DATCON OPERATION IN PHASE 2

- Difference of the SVD cluster position reconstructed by DATCON compared to the values of the real SVD clusterizer in number of strips
- Plots for v side
- Up: complete strip range, logarithmic y axis
- Down: central region only, contains about 48% of all strips

- Angular residuals for phi (left) and theta (right) in rad
- Comparing DATCON track parameter with the VXDTF track parameter

ROI CREATION

- Phi and theta tracks are extrapolated to PXD as straight lines
- Every possible row/column combination is taken as a valid ROI
- (Many) Unwanted ROIs are created

Difference of the ROI center for DATCON and VXDTF ROIs (u left, v right)

STATUS OF FULL DATCON SYSTEM

Concentrator

- FTB events are not sent out synchronously
- Ring buffer can now store up to 512 events to keep the system running (before 32) and 4096 clusters per link
- Issue found on FTB data
 - > At least FADC and FTB trailer missing
 - Event will never be proccessed in DATCON
 - > Data seem to be overwriten too soon on FTB
 - > Does not help for synchronization of FTB link. Safety measure implemented to not get stuck
- This week on maintenance day, Katsuro-san and Bruno will investigate the problem
 - After checking today, there are strong hints that there really is a FTB problem, investigation will go on the next days

CURRENT STATUS

- Monitoring the number of events waiting in the ring buffers
- Large number of stored events
- Missing events or large current event id difference are properly handled
- Concentrators are all running very stable

CURRENT STATUS

Tracking on chassis

- One chassis connected to half of the SVD sensors (28 FTBs) on the +x range
- HS spaces:
 - 128 x 64 for Phi: [-PI, PI], 64 x 64 for Theta: [0, PI]
 - Updated HS clusterizer to match HS dimension
- For both sides, track candidates are extrapolated as straight line. ROI only for layer 1
- DATCON sometimes gets stuck, can be recovered during run
- ROI format looks good. On run 1136 , 2.8% of events disappeared most likely because of FTB issue explained previously
- Run with ONSEN planned this week

- Exact same parameters as one chassis approach
- Phi and Theta tracking firmware finished and validated by simulation
- Hardware test ongoing
- Step by step approach (Data mgt + tracking + clust + extrap + Roi + ONSEN)

CURRENT STATUS

Slow and run control

- All important PVs saved in the archiver
- Added monitoring on concentrator to check buffer occupancy and SVD cluster
- DATCON run control is running nicely

Hardware testing

• Start tests this week with ONSEN

FADC 50 700 600 500 400 300 200 100 0 6 0 B 9 *လ* ကိ number of SVD cluster

• If stable we can optimistically start testing the fully scaled up system by the end of next week

STATUS OF BASF2 DEVELOPMENT

UPDATES ON BASF2 DEVELOPMENT

- Optimised SVD clustering
 - Similar performance as the real SVD clusterizer in basf2
- Fixed bug in extrapolation \rightarrow smaller residuals
- New way of track fitting
 - Fit tracks as straight lines in conformal space with data obtained from phi HS only
 - Speedup of factor 2
 - Less parameters to optimise
 - More precise values for phi and track radius, plus less tracks and thus less ROI
 - Caveat: Outliers degrade theta estimation, but simple way of outlier removal is implemented under test, looks promising

OUTLOOK FOR FURTHER IMPROVEMENTS

- Optimise all parameters
- Not only fit tracks in conformal space, but also extrapolate to PXD in conformal space

 \rightarrow always straight line extrapolation, no estimation of intersection of a circle with a straight line (for now, tracks are extrapolated as straight lines if R > 50 cm)

 \rightarrow no sqrt (very time consuming on FPGA)

- Use several small HS for different parts of the SVD
 - "Sector map" approach
 - Works for both phi and theta, but many clone tracks
 - Adapt this to new track fit algorithm → should decrease number of tracks and ROIs, and make it more precise

OPTIMISATION OF HLT ROIS

- HLT ROIs might be too small
 - On MC they provide high data reduction factor (DRF) of >100 for current standard values
 - But ROI finding efficiency is below 90% (with my analysis script)
 - → Optimise parameter (eight parameter)
- 1000 MC events
 - Generic Y(4S) + BG overlay (version: updated0918)
 - Full tracking
 - Randomly varying six of eight parameters (maximum sizes for u and v fixed to large values)

ROI FINDING EFFICIENCY VS DATA REDUCTION FACTOR

ROI FINDING EFFICIENCY VS NUMBER OF ROI

DRF VS NUMBER OF ROI

EFFICIENCY VS NUMBER OF ROI AND DRF

Parameter sweep + Standard values X

$\begin{array}{l} \textbf{ROI EFFICIENCY VS PT} - \textbf{STANDARD VALUES} \\ \textbf{ROI finding efficiency} \in vs \ \textbf{p}_{\tau} \end{array} \end{array}$

$\begin{array}{l} \textbf{ROI EFFICIENCY VS PT} - \textbf{OPTIMISED} \\ \textbf{ROI finding efficiency} \in \textbf{vs} \ \textbf{p}_{\tau} \end{array}$

COMPARISON STANDARD (U) – OPTIMISED (D)

ROI finding efficiency \in vs ϕ

ROI finding efficiency \in vs θ

28.05.2019

UNIVERSITÄT BONN

- Reasonable results and ROI with phase 2 setup (hardware and basf2)
- Full setup at KEK is there
 - Yet it hast to be tested and prove save operation
 - Test when connected to ONSEN, first in "spectator mode"
 - Don't risk to stop PXD / Belle II operation to not lose beam time
 - Debug SVD / FTB problem together with SVD experts
- Possible upgrades and improvements are developed and tested in basf2
 - Will try to apply them on FPGA in future, but first we want to have a running system
- Standard parameter for HLT ROI creation should be changed to improve ROI finding performance (although ROI and data reduction are not yet applied online)

THANK YOU FOR YOUR ATTENTION!