

RESULTS FROM PROTOTYPE DCDE Transfer Curves Belle vs Edet PS

Mai 28th 2019

SMALL MATRIX TEST-SYSTEM – BELLE PS

Starting with the functional BELLE II chain all components are stepwise replaced and tested

TEST SYSTEM – MAIN COMPONENTS

LMU PS: 9 different boards for each unit

SMALL MATRIX TEST-SYSTEM – EDET PS

* Low Dropout Regulator

Mai 28th 2019

4

MPG

PPM (top) & PSP (bottom)

TEST SYSTEM – MAIN COMPONENTS

Mercury+ PE1 Base Board

XU1 Board (Xilinx Zynq Ultrascale+ MPSoc Module FPGA)

FMC to E1 Adapterboard

DCDE Testing Procedure

Optimize settings within DCDE manual specifications

- INLpp < 6 LSBs within +/- 100 ADU
- DNL missing codes < 6 LSBs
- Noise < 1 LSB</p>

INL of a code *c* is here defined as the deviation of the *mid-points of the quantization steps* between the 40-240ADU straight line (end point method) and the measured real transfer function

$$INL = |V_{ideal \, 40-240}(c) - V_{real}(c)|$$

$$DNL(i) = \frac{V_{out}(i) - V_{out}(i-1)}{ideal \, LSB \, step \, width} - 1$$

ideal LSB step width = $\frac{V_{240} - V_{40}}{\#$ *steps between*

 $-1 \leq DNL \leq 1 \dots ideal$

DNL < -1 ... non-monotonic

DNL > 1 ... missing code

TRANSFER CURVE DCDE GAIN IMPLEMENTATIO

En30	En60	En90	En120	Gain	Times Iowest Gain
1	1	1	1	0.061	1.0
0	1	1	1	0.063	1.0
1	1	1	0	0.065	1.1
0	1	1	0	0.067	1.1
1	0	1	1	0.087	1.4
0	0	1	1	0.091	1.5
1	0	1	0	0.095	1.6
0	0	1	0	0.100	1.7
1	1	0	1	0.154	2.5
0	1	0	1	0.167	2.8
1	1	0	0	0.182	3.0
0	1	0	0	0.200	3.3
1	0	0	1	0.667	11.0
0	0	0	1	1.000	16.5
1	0	0	0	2	33

$$R_{s}: En30 = 30k$$

$$En60 = 3k$$

$$En90 = 1.5k$$

$$En120 = 15k$$

$$R_{f} = 15k$$

$$Gain = \frac{R_{s}}{R_{f}}$$

Mai 28th 2019

ADC-TRANSFER CURVE for different GAINS

E1_I_05 Hybrid Board

Gain	200ADU
33.0	13.6µA
2.5	166µA

DHE current source 248 μ A, 65k DAC steps \rightarrow strengthen switch for higher currents (VNSubIN 1DAC \approx 6 μ A)

INL EDET PS E1_I_05 Board

DNL: Non-Monotonicity, Missing Code

Mean Transfer Curve DCD-E Gain = 33.0 times lowest gain

Mai 28th 2019

Eduard Prinker, 23rd International Workshop on DEPFET Detectors and Applications

EDET: 600 vs 850 data points, worse INL, larger dynamic range (14.4 vs 14.2 μA)

High Gain: BELLE vs EDET PS Channel 12 (2)

Noise

EDET: slightly lower noise slightly lower tolerance

High Gain: BELLE vs EDET PS Channel 12 (3)

DNL: Missing Codes & Non-Monotonicity

EDET: non-monotonic (software?)

EDET: 8500 vs 1200 data points, jagged ADC curve, worse INL, larger dynamic range (194.6 vs 166 μA)

2.5 Gain: BELLE vs EDET PS Channel 162 (2)

Noise

Mai 28th 2019

2.5 Gain: BELLE vs EDET PS Channel 162 (3)

DNL: Missing Codes & Non-Monotonicity

33 Gain: BELLE vs EDET PS

INL & DNL Distributions

2.5 Gain: BELLE vs EDET PS

INL & DNL Distributions

EDET

CONCLUSION

> KEY SYSTEM DIFFERENCES:

- external current source
- different FPGA and firmware
- > different PS
- (slightly different DCDE settings?)
- KEY OBSERVATIONS:
 - EDET PS system seems to deliver higher INL violating DCDE limits from specs
 - both BELLE and EDET PS: most transfer curve not perfectly smooth
 - some channels markedly "jagged" transfer curves for EDET PS
 - noise for both PS no problem

All channels on: hll.mpg.de/~exp711

Mai 28th 2019

THANK YOU FOR YOUR ATTENTION

Mai 28th 2019

Eduard Prinker, 23rd International Workshop on DEPFET Detectors and Applications

20