

EDET DH80k – Characterization of the sensors with low noise setup

 $23^{\rm rd}$ International Workshop on DePFET Detectors and Applications 12/03/2019

M. Predikaka mip@hll.mpg.de

Motivation And Introduction

DEPFET Structure AND MEASUREMENT SETUP Optimization of Operation Parameters AND Response Function

SUMMARY AND OUTLOOK

Stroboscopic imaging provides insights to the dynamics of processes:

- short, discrete illumination periods with high intensity
- decouples exposure time, image contrast and motion blur
- pulse intensity defines the image contrast
- frequency of illumination defines time resolution
- pulse duration defines impact of motion blur

Challenges of stroboscopic imaging in TEM world:

- real space imaging \rightarrow high granularity
- high intensity \rightarrow high dynamic range
- direct electron detection \rightarrow thin substrate
- high pulse frequency \rightarrow high
- "grey scale" image
- \rightarrow high framerate
 - \rightarrow no data reduction possible

Stroboscopic imaging provides insights to the dynamics of processes:

- short, discrete illumination periods with high intensity
- decouples exposure time, image contrast and mation blue
- pulse intensity defines the image contrast
- frequency of illumination defines time resolution
- pulse duration defines impact of metion blur

Challenges of strobos opic imaging in TEM world:

- real space imaging \rightarrow high granulatity
- high intensity

• "grey scile" image.

- direct electron detection \rightarrow thin substrate
- high pulse frequency \longrightarrow high framerate
 - \rightarrow no data reduction possible

 \rightarrow high dynamic range

Introduction

to the camera system and its challenges

 $^{2}/_{17}$

Camera system:

- focal plane area (FPA) consists of 4 individual and independent modules ("tiles"), each capable of stand-alone operation
- small sensitivity gap between tiles (1.2 mm)
- All Silicon Module (ASM)
- readout in rolling shutter mode, 100 ns/row, 4 rows in parallel
- maximum framerate of 80 kHz or 12.8 $\mu s/{\rm frame}$
- front end electronics (FEE) buffers bursts (movies) with 100 frames
- maximum burst rate 100 Hz $\,$

Data rate:

- 8 bit digitization resolution:
 - tile module data rate of ${\sim}3~{\rm GB/s}$
 - total data rate of ${\sim}12~{\rm GB/s}$
- data reduction difficult if not impossible

Introduction to the camera system and its challenges

Camera system:

- focal plane area (FPA) consists of 4 individual and independent modules ("tiles"), each capable of stand-alone operation
- small sensitivity gap between tiles (1.2 nm)
- All Silicon Module (ASM)
- readout in rolling shutter mode, 100 ps/row, 4 rows in corallel
- maximum framerate of 30 Mz or 12.8 $\mu s/frame$
- front end electronics (FEE) buffers bursts (movies) with 100 frames
- maximum burst rate 100 Hz
- 8 oit digitization resolution
 - tile module data rate of $\sim 3~{
 m GB/s}$
 - total data rate of $\sim 12 \text{ GB/s}$
- data reduction difficult if not impossible

bondpads for DCD/DMC data & supplies

JTAG

bias co

witcher bank

sensor array

 $(30.7 \text{ x } 30.7) \text{ mm}^2$

est pads

 $^{2}/_{17}$

array of digital movie chip (DMC) ASICs

Introduction

to the camera system and its challenges

Sensor array

- 1 MPixel for the complete FPA
- $512 \ge 512$ pixels per tile
- (60 x 60) μm^2 pixel size

Dynamic range of pixels:

- single primary e⁻ sensitivity
- capable of storing the signal from 100 primary e⁻ at 300 keV (~800k signal e⁻)

Spatial resolution improvements:

- reduce e⁻ multiple scattering
 - thin sensitive detector substrate (50 μm and 30 $\mu m)$
- reduce e⁻ back scattering
 - no support layer
 - highly effective beam dump

Introduction

to the camera system and its challenges

Sensor array

- 1 MPixel for the complete FPA
- $512 \ge 512$ pixels per tile
- (60 x 60) μm^2 pixel size

Dynamic range of pixels:

- single primary e⁻ sensitivity
- capable of storing the signal from 100 primary eat 300 keV (~300 signal e⁻)
- Spatia resolution improvements:
- reduce e⁻ multiple scattering thin sensitive detector substrate (50 μm and 30 μm)
- reduce a back statiering
 - no support layer
 - highly effective beam dump

The DePFET structure

Depleted p-channel Field Efect Transistor on high resistive n-doped bulk

- integrated 1st stage amplification (g_q)
- charge storage capability
 - readout on demand
 - rolling shutter mode
- small capacitance and low noise
- high quantum efficiency and fill factor
- fully depleted bulk
 - optionally clamed
- front or back side illumination persible
- hasily scalable
- acjustable dynamic range
- signal compression
 - achieved by even low charge storage regions with different $\mathbf{g}_{\mathbf{q}}$

SOURCE

BACKSIDE

Two states of operation:

- OFF state:
 - idle state, no power dissipation, but collecting synal
- ON state:
 - transistor current depending on signal charge in internal gate

INTERNAL GATE

OVERFLOW REGION

CLEAR GATE

CLEAR

TERNAL GATE

BULK

Two states of operation:

- OFF state:
 - idle state, no power dissipation, but collecting sonal than
- ON state:
 - transistor current depending on signal charge in internal gate

EMPTY ON STATE

Two states of operation:

- OFF state:
 - idle state, no power dissipation, but collecting senal than
- ON state correlated double sampling:
 - transistor current depending on signal charge in internal gate

EMPTY ON STATE

Two states of operation:

- OFF state:
 - idle state, no power dissipation, but collecting signal that
- ON state correlated double sampling:
 - transistor current depending on signal charge in internal gate

OFF STATE

Two states of operation:

- OFF state:
 - idle state, no power dissipation, but collecting senal than
- ON state correlated double sampling:
 - transistor current depending on signal charge in internal gate

FILLED ON STATE

INITIAL STATE VS. FILLED STATE

INITIAL DEPFET RESPONSE IS LINEAR CALIBRATION WITH A KNOWN RADIOACTIVE SOURCE

Collected charge $[10^6 \text{ electrons}]$

Design concept: MODULARITY

Measurement setup

Measurement setup

Measurement setup

Design concept: MODULARITY

MOTIVATION AND INTRODUCTION DEPFET STRUCTURE AND MEASUREMENT SETUP Optimization of Operation Parameters AND Response Function

SUMMARY AND OUTLOOK

Clear Gate and Clear low voltage influence

- back-emission of e⁻ from clear contact,
- inversion (parasitic channel under the Clear Gate), and •
- charge loss to clear contact. ٠

Clear Gate and Clear low voltage influence

- back-emission of e⁻ from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

17

Clear Gate and Clear low voltage influence

- back-emission of e⁻ from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

'17

Clear Gate and Clear low voltage influence

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

17

Clear Gate and Clear low voltage influence

- back-emission of e⁻ from clear contact,
- inversion (parasitic channel under the Clear Gate), and ٠
- charge loss to clear contact. ٠

17

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

Measurements – operation window on depleted 50 µm thick EDET structures

Clear Gate and Clear low voltage influence

- back-emission of e⁻ from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

OVERLAY (RED BOX) OF AN IDENTICAL MEASUREMENT DONE WITH THE SMALLER VERSION OF THE FINAL CAMERA SETUP.

 $^{!}/_{17}$

Clear Gate and Clear low voltage influence

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

17

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

17

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

17

Clear Gate and Clear low voltage influence

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

- back-emission of e^- from clear contact,
- inversion (parasitic channel under the Clear Gate), and
- charge loss to clear contact.

$Measurements-incomplete \ clear \\ _{\text{on depleted 50 } \mu m \ thick \ \text{Edet structures}}$

Clear high voltage and clear pulse length $(t_{\rm c})$ influence

• efficiency of complete charge removal from internal gate and overflow regions.

Slow switching stage of SwitcherS ASIC limits $t_c>70~\rm{ns.}$ Final camera setup $t_c\sim20~\rm{ns}$ achieved with SwitcherB ASIC.

$Measurements-incomplete \ clear \\ _{\text{on depleted 50 } \mu m \ thick \ \text{Edet structures}}$

Clear high voltage and clear pulse length $(t_{\rm c})$ influence

• efficiency of complete charge removal from internal gate and overflow regions.

Slow switching stage of SwitcherS ASIC limits $t_c>70~\rm{ns.}$ Final camera setup $t_c\sim20~\rm{ns}$ achieved with SwitcherB ASIC.

$Measurements-incomplete \ clear \\ _{\text{on depleted 50 } \mu m \ thick \ \text{Edet structures}}$

Clear high voltage and clear pulse length $(t_{\rm c})$ influence

• efficiency of complete charge removal from internal gate and overflow regions.

Slow switching stage of SwitcherS ASIC limits $t_c>70~\rm{ns.}$ Final camera setup $t_c\sim20~\rm{ns}$ achieved with SwitcherB ASIC.

W09 F0	(
Thickness	$50 \ \mu m$	
Gate L	$5.0 \ \mu m$	
Gate W	$27.2~\mu\mathrm{m}$	
Drain	-5.0 V	
Source	0.0 V	
Gate Off	$5.0 \mathrm{V}$	
Gate On	-2.17 V	
Clear low	1.0 V	
Clear high	sweep	
Clear Gate	-0.5 V	
Depletion	-35.0 V	
Bulk	10.0 V	
Drift	-5.0 V	
Guard	-5.0 V	

TTOO DOF

FFIL; COMPLETELY FILLED STATE

$Measurements - charge \ collection_{\ {\rm on \ depleted \ 50 \ \mu m \ thick \ EDET \ structures}}$

Depletion and Drift voltage influence

- integrated 1^{st} stage amplification (g_q) ,
- charge loss to Clear, and
- charge loss to Drift region.

17

$Measurements - charge \ collection_{\ {\rm on \ depleted \ 50 \ \mu m \ thick \ EDET \ structures}}$

MPG HLL

Depletion and Drift voltage influence

- integrated 1^{st} stage amplification (g_q) ,
- charge loss to Clear, and
- charge loss to Drift region.

$Measurements - charge \ collection_{\text{on depleted 50 } \mu m \ thick \ EDET \ structures}$

Depletion and Drift voltage influence

- integrated 1^{st} stage amplification (g_q) ,
- charge loss to Clear, and
- charge loss to Drift region.

$Measurements - charge \ collection_{\text{on depleted 50 } \mu m \ thick \ EDET \ structures}$

Depletion and Drift voltage influence

- integrated 1^{st} stage amplification (g_q) ,
- charge loss to Clear, and
- charge loss to Drift region.

$Measurements - charge \ collection_{\ {\tiny on \ depleted \ 50 \ \mu m \ thick \ EDET \ structures}}$

<13/₁₇

$Measurements - charge \ collection_{\ on \ depleted \ 50 \ \mu m \ thick \ EDET \ structures}$

17

Depletion and Drift voltage influence

- integrated 1^{st} stage amplification (g_q) ,
- charge loss to Clear, and
- charge loss to Drift region.

Measurements – noise v integration time on depleted 50 µm thick EDET structures

Integration time (t_{int}) influences

• the overall noise performance of the system.

Noise dominated by Leakage Current and Common Mode Noise.

Measurements – noise v integration time on depleted 50 µm thick EDET structures

17

Integration time (t_{int}) influences

• the overall noise performance of the system.

Noise dominated by Leakage Current and Common Mode Noise.

Measurements – noise v integration time on depleted 50 µm thick EDET structures

Integration time (t_{int}) influences

• the overall noise performance of the system.

Noise dominated by Leakage Current and Common Mode Noise.

Response function – Calibration

of depleted 50 μ m thick EDET structures

Procedure:

- insertion of fixed amount of charge by $^{55}\mathrm{Fe}$ radioactive source at optimized operation voltages
- extraction of the primary g_q
- explore the full dynamic range with calibrated LED pulses and leakage current

Thickness	$50 \ \mu m$
Gate L	$5.0~\mu{ m m}$
Gate W	$27.2~\mu\mathrm{m}$
Drain	-5.0 V
Source	0.0 V
Gate Off	$5.0 \mathrm{V}$
Gate On	-2.17 V
Clear low	1.0 V
Clear high	18.0 V
Clear Gate	-0.5 V
Depletion	-21.0 V
Bulk	10.0 V
Drift	-5.0 V
Guard	-5.0 V

W09 F07

PRIMARY $g_q = 291 \text{ pA/e}^- (1 \pm 0.014)$

Response function – Dynamic range

of depleted 50 μ m thick EDET structures

Procedure:

- insertion of fixed amount of charge by $^{55}\mathrm{Fe}$ radioactive source at optimized operation voltages
- extraction of the primary $g_{\rm q}$
- explore the full dynamic range with calibrated LED pulses and leakage current

PRIMARY $g_q = 291 \text{ pA/e}^- (1 \pm 0.003)$ SECONDARY $g_q = 70 \text{ pA/e}^- (1 \pm 0.10)$ LEAKAGE $I_L = 0.57 \text{ e}^{-}/\mu \text{s}(1 \pm 0.05)$

MOTIVATION AND INTRODUCTION DEPFET STRUCTURE AND MEASUREMENT SETUP Optimization of Operation Parameters AND Response Function

SUMMARY AND OUTLOOK

- pilot production successfully finished and characterized
- fabrication of the main batch has been resumed

Summary and outlook

- pilot devices showing expected results
 - signal compression
 - 290 pA/e⁻ for the first ~50 k signal e⁻
 - ~70 pA/e⁻ for the rest
 - dynamic range of >800k signal $\rm e^-$
 - operation window big enough to operate the large area devices

FUTURE plans

- characterize 30 $\mu\mathrm{m}$ thin sensor and an additional "wild-card" design
- start the simulations of the design
 - possible optimizations
- radiation hardness studies

THANK YOU FOR YOUR ATTENTION!

Common mode noise

W09 F07

Thickness	$50~\mu{ m m}$
Gate L	$5.0~\mu{ m m}$
Gate W	$27.2~\mu\mathrm{m}$
Drain	-5.0 V
Source	0.0 V
Gate Off	$5.0 \mathrm{V}$
Gate On	-2.17 V
Clear low	1.0 V
Clear high	18.0 V
Clear Gate	-0.5 V
Depletion	-21.0 V
Bulk	10.0 V
Drift	-5.0 V
Guard	-5.0 V

 $14/_{17}$

Common mode noise

W09 F07

20 % CHANGE IN $\boldsymbol{\sigma}_{noise}$

Radiation hardness

Radiation causes positive charge buildup in Oxide:

- homogeneous radiation compensated by gate voltage shifts
- inhomogeneous radiation could cause problems

