

Micro-channel cooling in HEP

Marcel Vos IFIC (UVEG/CSIC) Valencia DEPFET workshop, Ringberg, March 2019

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168

Special thanks to: Laci Andricek (MPG-HLL), Lars Eklund (Glasgow), Nils Flaschl (DESY), Pawel Jalocha, Malcolmn John (Oxford), Alessandro Mapelli (CERN), Carlos Mariñas (U. Bonnn), Paolo Petagna (CERN), Miguel Ullan (CNM), Nacho García, Guillem Vidal, Miguel-Angel Villarejo (IFIC)

The case for MCC in HEP

Issues:

- \rightarrow thermal barriers (glue layers at each interface)
- \rightarrow material budget (avoid high-Z material)
- \rightarrow coolant contact area
- → CTE mismatch (cf. ATLAS IBL experience)

NA62 GigaTracker

Rare Kaon decay experiment around CERN North Area beam line (very forward: 270 m long)

Hybrid pixel detector: 40 W on 3x6 cm²

Liquid cooling (mono-phase C6F14 at -20C)

DEPFET workshop, Ringberg, March 2019

The first MCC application in HEP

Experiment started running end of 2014

See talk by Massimiliano Fiorini on Monday

A.Francescon et al: *Application of micro-channel cooling to the local thermal management of detectors electronics for particle physics*, Microelectronic Journal, Volume 44, Issue 7, July 2013, Pages 612–618

DEPFET workshop, Ringberg, March 2019

LHCb VELO upgrade

- Pixel-based upgrade after LS2 (2020)
- Nearly 10¹⁶ 1 MeV n/cm² (non-uniform)
- Leakage current 1W/sensor (@1000V and -20C)
- Basic assembly dissipates 4 x 1W in sensors,
- 12 x 3W in VeloPix chips and 5W in hybrid

Evaporative system: must deal with high pressure!!

DEPFET workshop, Ringberg, March 2019

JINST 10 (2015) no.05, C05014

LHCb VELO upgrade

Silicon cooling plate

evaporative cooling \rightarrow create regions to "boil" the CO2

high pressure (60 bar at +20C)

- thick cover (~200 μ m)
- narow channels (70 x 200 μ m)
- solid metal "Kovar" connectors
- welded to metal layer on Si surface

Key components verified to 100s of bars

- Good thermal performance
- Temperature gradient at overhang

Micro-channel cooling, our take...

- Liquid cooling provides excellent temperature control, but is too bulky
- DEPFET, with localized power dissipation and SOI process, provides an interesting application \rightarrow integrate cooling in all-silicon ladder
- Compared to existing effort, aim at relatively high temperature, low pressure
- Keep it simple: mono-phase
- Small team at University of Bonn MPG-HLL Munich and IFIC Valencia
- Embedded in larger effort of AIDA2020

All-silicon ladder with integrated cooling

thinned all-silicon module with integrated cooling channels

- :- integrate channels into handle wafer beneath the ASICs
- :- channels etched before wafer bonding \rightarrow cavity SOI (C-SOI)
- :- full processing on C-SOI, thinning of sensitive area
- :- micro-channels accessible only after cutting (laser)

First attempt

Silicon sensors with integrated micro-channels based on DEPFET process:

Inlet and outlet: ~380 x 340 μm

DEPFET workshop, Ringberg, March 2019

First attempt

Silicon sensors with integrated micro-channels based on DEPFET process:

- Si modules with the designed dimensions of the DEPFET detectors
- Homogeneous thickness: sensor area not thinned
- Aluminum layer with resistors **simulates the DEPFET power distribution**

Measurements

First results

More information available in JINST, Volume 11, June 2016

DEPFET workshop, Ringberg, March 2019

Connectors – forward experiments

- Solution adopted by experiments who leave the connectors outside acceptance:
 - Out-of-plane connection with relatively large diameter
 - Kovar (nickel/cobalt) soldered onto silicon with metal layer
- Very solid connection: shown to stand a pressure of 400 bar and a pull force of 600 N

NanoportTM PEEK connectors

Low mass silicon frames with embedded microchannels for the thermal management of future vertex detectors in High Energy Physics experiments

Andrea Francescon^{a*}, Paolo Petagna^a, Alessandro Mapelli^a, Giulia Romagnoli^a, Luciano Musa^a, Stefano Bortolin^b, Davide Del Col^b and John Richard Thome^c

^a CERN, Physics Department, CH-1211, Geneva (Switzerland) ^b Dipartimento di Ingegneria Industriale, University of Padova, Padova (Italy) ^c Heat and Mass Transfer Laboratory (LTCM), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne (Switzerland) ^{*}E-mail: andrea.francescon@cern.ch

Low-mass in-plane connectors

Low-Z 3D-printed connectors

Arbitrary complexity, 30 µm tolerance → self-align with silicon channels Very rapid prototyping, very cheap Pressure-tested to >100 bars

(connector, glue connection to be improved)

Present (0.05% X/X₀)

Glue PEEK tubes

<text>

Past (0.21% X/X₀) Smaller fittings

DEPFET workshop, Ringberg, March 2019

MCC qualification: connector material

Different radiations levels

Two type of radiation:

- Neutrons (not done yet)
- X-Rays

MCC qualification: connectors material

DEPFET workshop, Ringberg, March 2019

MCC qualification: automatic assembly

- Glue robot based on low-cost 3D printer: open hardware and software

- Adapted to incorporate syringe with controlled glue volume

MCC qualification: automatic assembly

MCC qualification: Vacuum test

Sample number	#1	#2	#3	#4
Vacuum test [mbar l/h]	5.5 x 10 ⁻⁹	9.0 x 10 ⁻⁹	8.6 x 10 ⁻⁹	6.1 x 10 ⁻⁹

DEPFET workshop, Ringberg, March 2019

MCC qualification: pressure test

180 bar achieved

DEPFET workshop, Ringberg, March 2019

MCC qualification: pressure test

50 bar achieved

DEPFET workshop, Ringberg, March 2019

MCC optimization: pressure test

DEPFET workshop, Ringberg, March 2019

MCC manifold design

New MCC layout has been manufactured:

- Optimized layout for MCC: better performance
- Avoid pillar structures

MCC manifold design

New MCC layout has been manufactured:

- MCC along the edge of the sensor to cool sensor area

DEPFET workshop, Ringberg, March 2019

- Thermal camera inside black box
- Simulation $\Delta T{=}10{,}5K$ and test $\Delta T{=}10{,}1K$

DEPFET workshop, Ringberg, March 2019

MCC sample cooled non-stop for 2 days with no leaks and no clogging

Agreement with FE simulation within 10%

DEPFET workshop, Ringberg, March 2019

H₂O

Current work

AT/Power density [K cm²/W]

9

8

7

6

3

0⁶0.2

Realistic design

300 µm Si ASICS +

100 µm Bump-boundings

thermal resistivity of 6 W/m·K

0.6

0.4

0.8

DEPFET workshop, Ringberg, March 2019

f.

2.975e+002

2.954e+002

2.933e+002

[K]

FE Simulation H₂O

1.2

Volumetric flow [l/h]

Solder ball

Au-bumps

Al-pads

1.4

1

Switcher

FE Simulation H₂O realistic design

Summary

- Microchannels can be integrated in active sensor
 - Excellent thermal figure of merit, virtually no material
- Low-mass 3D-printed connector with reliable glue procedure
 - Bring connections into tracking volume
- FE simulation describes performance to within 10%
 - Reliable predictions help design
- New MCC layouts provide cooling over entire ladder
 - Belle 2/Higgs factory