Imaging performance of the EDET-80k detector

Ibrahym Dourki

Ringberg, 12 March 2019

Ibrahym Dourki Max-Planck Institute for the Structure and Dynamics of Matter Center for Free Electron Laser Science (CFEL) Luruper Chausee 149 D-22761 Hamburg, Germany

ibrahym.dki@gmail.com ibrahym.dourki@mpsd.mpg.de

Outline

- Introduction: EDET-80 detector for fast TEM imaging
- Simulation of EDET-80 response
- > Non-spatial capabilities of EDET-80: Electron counting
 - Scenario 1: Infinit pixel
 - Scenario 2: Pixel and cluster illumination
 - Scenario 3: Pixel and homogenous illumination
 - Detective Quantum Efficiency: DQE(0)
- Spatial capabilities of EDET-80
 - Modulation Transfer Function (MTF)
 - DQE versus spatial frequency: DQE(f)
- **EDET** calibration with Cd-109: simulation vs. measurement
- Conclusion and outlook

Introduction: EDET- 80 detector for fast TEM imaging

 Goal: Real space and time imaging using TEM (e.g, fast molecular dynamics in biology)

Tools:

- Technology: Non-linear DEPFET
- Monte Carlo simulation: Detector modeling

- Large area detector with high speed: EDET-80kHz
- Readout time 100 ns/row (4 rows in parallel, t=12.8µs)
 100 frames ⇒ movie of 1.28 ms
- ➢ Single electron resolution ⇒ low dose applications
 Direct electron detection
 - High DQE: key for radiation sensitive samples

\succ Large dynamic range \Rightarrow High intensity

- Thin sensor (50 μm) with 100 % detection % 100 efficiency

- Digitization with 8 bit resolution

Simulation of EDET-80 response

Dynamic range & single electron resolution

Non-spatial capabilities of EDET-80: Electron counting Scenario 1: Infinit pixel

Scenario 2: Pixel and cluster illumination

Ibrahym Dourki, Ringberg DEPFET Workshop 11-13 March 2019

Scenario 3: Pixel and homogenous illumination

Low dose: Single event resolution

Ibrahym Dourki, Ringberg DEPFET Workshop 11-13 March 2019

Detective Quantum Efficiency: DQE(0)

DQE quantifies the detector performance in terms of adding extra noise by the detector to SNR_{in}. It combines MTF and noise performance of the detector.

Higher DQE improves the image quality

 $DQE = SNR \downarrow out \uparrow 2 / SNR \downarrow in \uparrow 2 \le 1$

- The closer the DQE is to 1, the better the image quality
- Ideal detector

 $SNR\downarrow out \uparrow = SNR\downarrow in \uparrow \Rightarrow$ DQE=1

 \Rightarrow No information is lost

Image quality: depends on electron dose and the DQE of the detector

Detector2 (2xDQE) achieves the same image quality with half the e- dose.

2xDQE

Radiation sensitive samples:

DQE is a key

DQE at Zeros spatial frequency

Spatial capabilities of EDET-80: Modulation Transfer Function (MTF)

MTF measures the ability of a detector to transfer signals of various spatial frequencies from the input to the output of the detector.

Comparison with other commercially available detectors

- All detectors are better than films and can capture movies
- These results demonstrate the suitability of high gain settings (k=2, 1, 0.667) for lowelectron dose applications.
- EDET-80 shows great promise for low-dose TEM applications

Detector	#pixel	Pixel length [mu]	A per pixel at mag. 50k	Object length at mag. 50k [mu]	Ava. Speed [fps]	Max. Speed [fps]	Sweet flux [e-/px/s]
Falcon III	20 M	14	2.8	0.41	40	->	160
K2 Summit	14 M	5	1	0.38	400	->	<2
DE-20	17 M	6.4	1.3	0.67	20-32	->	100
EDET-80	1 M	60	12	1.2	1000	80 000	20 000

G. McMullan et al, Methods in Enzymology, Volume 579, 2016

Low gain performance (Large dynamic range)

Ibrahym Dourki, Ringberg DEPFET Workshop 11-13 March 2019

EDET calibration with Cd-109: simulation versus measurement

Expected peak position

- Mean energy of X-Rays emitted by Cd-109:
 E_{xray} = 22.7 keV
- Number of e-h generated in Si : Ne = 6270 e-h pairs
- Linear response region of DEPEFT: $g_{\alpha} = 210.64 \text{ pA/e-}$
- **Current generated by 6270 e- is :** $I = 1.32 \mu A$
- > Taking into account the gain: k=2 (highest gain, 33): $I_d = I \times k=1.28$ (μ A) x 2=2.64 μ A32
- > Maximal current that can be measured by DCD of 8 bit resolution: $I_{max}=32 \mu A$
- Expected peak: 21.12 ADU

Single frames

Simulation versus measurement counts

Simulation (10000 frames)

Measurement (300 M frames)

Summary & Outlook

> Dominant source of noise in the detector: Poisson noise

> A competitive direct detector with improved imaging performance has been identified.

> EDET-80 shows great promise for TEM applications

Next step: EDET imaging performance in counting mode (Higher SNR and DQE)

HLL > Ladislaw Andricek • Martin Hensel • Christian Koffmane • Jelena Ninkovic

- Gerhard Schaller
 Martina Schnecke
 Florian Schopper
 Andreas Wassatsch
- Christian Zirr Rainer Richter Eduard Prinker Rainer Richter Mikhail Polovykh
- Mitja Predikaka O Mohammed Ibrahim

KIT ► Ivan Peric

USI > Klaus Gärtner

MPSD > Ibrahym Dourki • Sascha Epp • Djordje Gitaric • R. J. Dwayne Miller • Fabian Westermeier

Thank you for your attention

En30	En60	En90	En120	Gain	Times lowest Gain
1	1	1	1	0.061	1.0
0	1	1	1	0.063	1.0
1	1	1	0	0.065	1.1
0	1	1	0	0.067	1.1
1	0	1	1	0.087	1.4
0	0	1	1	0.091	1.5
1	0	1	0	0.095	1.6
0	0	1	0	0.100	1.7
1	1	0	1	0.154	2.5
0	1	0	1	0.167	2.8
1	1	0	0	0.182	3.0
0	1	0	0	0.200	3.3
1	0	0	1	0.667	11.0
0	0	0	1	1.000	16.5
1	0	0	0	2	33

Gain k	2	1	0.667	0.2	0.182	0.167	0.154	0.1
Charge per first LSB	297	594	890	2970	3264	3557	3857	5940

EDET DATA

