GREST

⊳ GREST

- \triangleright Quadropix
- ▷ First Prototype
- ▷ Critical Parameters
- ▷ Comparision of Measurements and Simulations
- \triangleright Improvements of the Quadropix
- \triangleright Follow-ups

GREST

Getting Ready for the European Solar Telescope (GREST)

EST

- largest solar telescope in Europe
- multiple exchangeable instruments
- located on the canary islands
- start of construction ${\sim}2020$
- start of operation ${\sim}2027$

from: https://phys.org/news/2015-04-sun-tenuous-outer-tendrils-revealed.html

\triangleright closest Star

 \triangleright directly influences life on earth

\triangleright laboratory for fundamental physics

- → magnetohydrodynamics
- └→ fusion

Optical Imaging Polarimetry

- incident light passes a modulator and a following analyzer
- modulator (e.g. piezo elastic modulator) operates at up to 50 kHz
- sensor synchronized to modulator
- generates and measures 4 different modulated intensity states,
- Stokes Parameter, I (intensity), Q, U (linear pol.) and V (circular pol.) can be calculated from the measured modulation states

Measurement from the Swedish solar telescope, La Palma Credits: J. Hirzberger (MPS)

Derived physical parameters of the solar atmosphere: -B-Field (abs. and direction) -plasma-velocity into Line of Sight (LOS) Credits: A. Lagg (MPS)

March 2019

A. Bähr, MPG Halbleiterlabor

Quadropix

- ▷ MOSFET on n-substrate
- \triangleright deep-n implant below gate
 - → potential minimum for electrons
 - → "internal gate"
- \triangleright current modulated by electrons in internal gate
- \triangleright reset via clear and clear gate
- $Descript{S}$ good signal to noise
 - → ~3 e⁻ @ 2.5 µs/line
- ▷ unobstructed backside contact; 100% fill factor

 \triangleright simplified it's a collection node for charge

▷ superpixel containing 4 DePFET subpixels

- \triangleright charge collected only in one subpixel
- \triangleright sensitivity controlled by drain voltage

- ▷ superpixel containing 4 DePFET subpixels
- \triangleright charge collected only in one subpixel
- \triangleright sensitivity controlled by drain voltage
- \triangleright fast modulation (given by switching time)
- \triangleright at readout rate of 2.5 µs/line
 - \rightarrow ~100 Hz rate for full set of stokes parameters

First Prototype

\triangleright testmatrix

- \rightarrow 64x32 pixels
- \rightarrow (60 µm)² pixels
- → readout by Veritas 2.1 ASIC (M. Porro et al., proc IEEE, 2014)

\triangleright test setup

- └→ sensor in vacuum
- → liquid cooling system
- → light and X-ray sources
- timing provided by proprietary firmware written for a Xilinx Kintex 7 on a Mercury KX1 board

 \triangleright first test-sequence

- → sub-matrices sensitive successively
- → readout of two insensitive submatrices during one sensitive state
- → frame consists of 8 sub-matrix readouts

- illuminated while sub-matrix A was sensitive
- \triangleright sensor had two damaged rows
- \triangleright only signal in first readout of sub-matrix A
- \triangleright behaves as expected

 \triangleright first test-sequence

- → sub-matrices sensitive successively
- → readout of two insensitive submatrices during one sensitive state

- illuminated while sub-matrix A was sensitive
- \triangleright sensor had two damaged rows
- \triangleright only signal in first readout of sub-matrix A
- \triangleright behaves as expected

First Prototype – Stiped Cross-Talk

Critical Parameters

- Seperation of Charge Collection
 (and dependence on operation voltages)
- Swtiching Time
- State Dependence of charge collection

Seperation of Charge Collection

 \triangleright operation window of 5 V

State Dependency of Charge Collection

State Dependency of Charge Collection

- \triangleright asymmetry clearly visible
- critical as polarimetric information is obtained by subtracting images

- \triangleright calibrated noise distribution
- \triangleright filter-time of 2.5 µs
- ▷ first readout 2.9 e⁻ ENC rms
- ▷ second readout 2.4 e⁻ ENC rms
- ▷ difference -> leakage current

- spectra show nearly no events with multiplicity < 3 (apart from cross talk events)
- ▷ 150 eV FWHM @ 5.9 keV
- ▷ P/B of (4800±360):1

Comparision of Measurements and Simulations

Comparison: Measurements – Simulation / Backside Voltage

Comparison: Measurements – Simulation / Switching Time

- \triangleright measured Switching time convolution of
- \triangleright laser pulse width (100 ps FWHM)
- \triangleright ASIC switching time (10 ns 10%-90%)
- \triangleright transmission line RC (< 1 ns)
- \triangleright collection time (simulations)

- Simulated collection time 150 ns / 80 ns (10%-90%) for -72 V and -73 V
- ▷ switching time dominated by collection time

Comparison: Measurements – Simulation / Charge spreading

\triangleright qualitative agreement

- simulated spreading worse than measured
 - └→ "illumination spot" not identical
 - └→ different bulk thickness
 - → simulation covers only a 3x3 array (edge effects possible)

Improvements of the Quadropix

Improving the Quadropix

- high energy implant aligned to the pixel structure

Improving the Quadropix

- \triangleright standard

 - └→ selectivity > 1e4
 - └→ limited backside voltage
 - → large asymmetry of CC

\triangleright focussing he-implant

- → improved operation window
- \mapsto reduced charge spreading

Follow-ups

Development of science capable camera prototype with: Instituto Ricerche Solari (IRSOL) Scuola univeritaria professionale della Svizzera italiana (SUPSI)

- 256x256 / 512 x 256 Superpixels
- Superpixel area 60 x 60 μm^2 or 48 x 48 μm^2
- On-chip or discrete pitchadapter
- t_{rfrm} = 1.28 ms, $v_{rfrm} \approx$ 780 Hz

- ▷ Development of a 1kx1k Superpixel camera
 - Conservative option
 - VERITAS ICs and Switcher onsensor edges
 - SwitcherS on Sensor

Option: Integration of Switchers on interposer

Option: Integration of Switchers on pitchadapter

- → Max Modulator Frequency = 50kHz
 - \mapsto change of state all 5 µs
 - → synchronization of sensor and modulator (sensor slave to modulator)
- → Full Frame Rate ~ 100 Hz (for all subpixels)
 - \mapsto equal to 5µs per electrical row
- └→ Low Noise
- → No mixing of polarization states

Thanks for your Attention

