

DCDE Measurement Results

March 12th 2019

OVERVIEW

SAMPLING POINT CURVE

SMALL MATRIX TEST-SYSTEM – STATUS QUO

Starting with the functional BELLE II chain all components are stepwise replaced and tested

ADC-TRANSFER CURVE for different GAINS

E1_I_04 PPS-Testing (Summer 2018)

Gain	200ADU
33.0	13µA
1.7	240µA

DHE current source 248µA, 65k DAC steps

 \rightarrow strengthen switch for higher currents

TRANSFER CURVE DCDE GAIN IMPLEMENTATION

Gain	200ADUs	current/ADU	ADU/current	to lowest Gain	from Resistor
EnAll	410 (est.)	2.05	0.49	1.0	1.0
En90	240	1.2	0.83	1.71	1.7
En30,60,120	165	0.825	1.21	2.48	2.5
En30,120	126	0.63	1.59	3.25	3.3
En30,120	39	0.195	5.13	10.5	11.0
En30	13	0.065	15.4	31.5	33.0

Pixel Transfer Curve – Expectation vs Measurement

Comparison of one Pixel Transfer Curve with two different Systems

© Mitja Predikaka

Pixel Transfer Curve – Expectation vs Measurement (I

TRANSFER CURVE 1.7 x lowest Gain

March 12th 2019

9

- High gain mode: determine pixel specific gain factor using Cd¹⁰⁹ source **Statistics**!
- Measure laser pulse ADU in high gain mode

#*electrons per pulse*=6000**Pulse ADU/Gain Factor*

- Step-increase of pulse count within one readout period in order to measure:
- "kink"-position & secondary g_a
- discrete gain curve
- explore complete dynamic range of the pixel

Pixel Capacity

Increasing frequency of laser pulses explores full dynamic range of device

Laser Scan neighbour Pixels (R31/C44), Gain = 1.7, ClearOff=1000.0mV, CCG=-500.0m

- **bottom pixel (gain 20) shows higher plateau current than central pixel (gain 19)**
- Overflow ~ 100k electrons
- Spillover ~ 2.3mio electrons or 160 ADUs (70 ADUs for 1mio electrons)→3 times higher gain 5.1 (assumption: 50ADU offset width)

MPG HLL

DCDE Offset Compensation Principle

2 step process:

1. different channel spreads are corrected by individual additions of *IPDAC*

2. channels are collectively pulled into the dynamic range by *VNSubIn* + *IPAddIn*

2-bit DAC principle (I)

March 12th 2019

2-bit DAC principle (II)

2-bit DAC principle (III)

Ipdac=1≈ $\phi \downarrow 3$ 44*ADU*≈ 44×13*μA/* 200 ≈2.9*μA*

	2-bit-DAC=1	2-bit-DAC=2	2-bit-DAC=3
ipdac0	36.0	37.0	39.0
ipdac1	82.0	133.0	175.0
ipdac2	131.0	210.0	255.0
ipdac3	169.0	255.0	255.0
ipdac4	202.0	255.0	255.0
ipdac5	223.0	255.0	255.0
ipdac6	247.0	255.0	255.0
ipdac7	255.0	255.0	255.0
ipdac8	255.0	255.0	255.0

2-bit DAC principle (IV)

2-bit DAC principle 1.7 gain (I)

Sweep IPDAC values for Gair	n = 1.7
-----------------------------	---------

	2-bit-DAC=1	2-bit-DAC=2	2-bit-DAC=3
ipdac0	16.0	16.0	16.0
ipdac1	19.0	21.0	24.0
ipdac2	21.0	27.0	34.0
ipdac3	24.0	34.0	43.0
ipdac4	27.0	41.0	51.0
ipdac5	29.0	46.0	57.0
ipdac6	33.0	51.0	61.0
ipdac7	36.0	55.0	66.0
ipdac8	39.0	57.0	71.0
ipdac9	41.0	60.0	75.0
ipdac10	44.0	63.0	79.0
ipdac11	47.0	66.0	83.0
ipdac12	49.0	70.0	87.0
ipdac13	51.0	73.0	89.0
ipdac14	52.0	75.0	91.0
ipdac15	54.0	77.0	94.0
ipdac16	57.0	82.0	100.0
ipdac17	58.0	85.0	103.0
ipdac18	59.0	87.0	107.0
ipdac19	59.0	89.0	110.0
ipdac20	61.0	90.0	115.0
ipdac21	62.0	92.0	119.0
ipdac22	64.0	94.0	124.0
ipdac23	65.0	96.0	131.0
ipdac24	66.0	98.0	142.0
ipdac25	67.0	99.0	152.0
ipdac26	68.0	103.0	160.0
ipdac27	69.0	105.0	166.0
ipdac28	71.0	107.0	172.0
ipdac29	72.0	110.0	178.0
ipdac30	74.0	113.0	187.0
ipdac31	75.0	115.0	193.0
ipdac32	75.0	117.0	197.0
ipdac33	76.0	120.0	205.0
ipdac34	77.0	123.0	214.0
ipdac35	79.0	127.0	221.0
ipdac36	81.0	133.0	227.0
ipdac37	81.0	141.0	231.0
ipdac38	83.0	149.0	235.0
ipdac39	84.0	154.0	237.0
ipdac40	85.0	158.0	239.0
ipdac41	86.0	162.0	241.0
ipdac42	87.0	167.0	242.0
ipdac43	88.0	171.0	243.0
ipdac44	89.0	175.0	244.0
ipdac45	89.0	179.0	245.0
ipdac46	90.0	184.0	247.0
ipdac47	91.0	188.0	249.0
ipdac48	93.0	198.0	252.0
ipdac49	94.0	203.0	254.0

Ipdac=1≈*φ*↓10 2.8*ADU*≈2.8 ×240*µA/*200 ≈3.4*µA*

010

10

20

30

40

50 IPDAC

2-bit DAC principle 1.7 gain (II)

Cd109 SOURCE high gain

30 mio frames

March 12th 2019

Cd109 SOURCE high gain

2-bit DAC adjustment, 100 mio frames

COMMON MODE – high gain

COMMON MODE – 1.7 gain

Sampling Point Curves w different matrix setting

Laser on Pixel(31,44), gain 1.7, 128ns

Summary

Gain, IPDAC

- Gap between 3.3 and 11.0 times lowest gain
- IPDAC = 1 corresponds to $\approx 3 \mu A$
- 100 prim. electrons = 56 ADU (800k sec. e-) at gain 1.7
- Precision vs Radiation Hardness
 - abandonment of 150 ADU (50 ADU offset
 - Poisson Noise no issue
 - IPDAC potential unused
 - 4-bit DAC possible?
 - rad. damage: sustain pixel spread> 400μA

Gain	current 200ADUs [µA]
1.0	410 (est.)
1.7	240
2.5	165
3.3	126
11.0	39
33.0	13

No explanation for odd shape of matrix transfer curve, high sampling point curve shifts & high Common Mode $\sigma \downarrow primary e^{\uparrow} - = \sqrt{primary e^{\uparrow} - (mean)}$ $\sigma \downarrow 100 = 10 e^{\uparrow} - \approx 80,000 secondary e^{\uparrow} - (mean)$

THANK YOU FOR YOUR ATTENTION

March 12th 2019

Eduard Prinker, Ringberg DEPFET Workshop

27

TEST SYSTEM – MAIN COMPONENTS

LMU PS: 9 different boards for each unit

ADC-TRANSFER CURVE 1.7 x lowest Gain

E1_I_04 PSP-Testing (Aug 2018)

© Mitja Predikaka

March 12th 2019

Gain Calculation Sheet

	En30	En60	En90	En120	Gain	Times lowest Gain	Rank	
Rs	30	3	1.5	15	Rf=15			
	1	1	1	1	0.061	1.0	1	
	0	1	1	1	0.063	1.0	2	
	1	1	1	0	0.065	1.1	3	
	0	1	1	0	0.067	1.1	4	
	1	0	1	1	0.087	1.4	5	
	0	0	1	1	0.091	1.5	6	
	1	0	1	0	0.095	1.6	7	
	0	0	1	0	0.100	1.7	8	
	1	1	0	1	0.154	2.5	9	
	0	1	0	1	0.167	2.8	10	
	1	1	0	0	0.182	3.0	11	
	0	1	0	0	0.200	3.3	12	
	1	0	0	1	0.667	11.0	13	
	0	0	0	1	1.000	16.5	14	
	1	0	0	0	2.000	33.0	15	

TRANSFER CURVE 3.3 x lowest Gain

Pixel Capacity

Increasing frequency of laser pulses explores full dynamic range of device

Laser Scan neighbour Pixels (R31/C44), Gain = 1.7, ClearOff=1000.0mV, CCG=-500.0mV

Edet Matrix W09 – A07 Pixel (R31/C44)

March 12th 2019

Eduard Prinker, Ringberg DEPFET Workshop

Optical Power Meter Measurements

Sensor Rows	32	
sensor thickness	50	μm
wavelength	635	nm
Frequency	62.5	MHz
time per frame	4.096	μs
E _{photon}	1.952506975	eV
absorption coefficient	3270.00	a/cm
Paverage	1.000	μW
Pulse length	4.096	μ _s
Pulse energy (eV)	25,565,224	eV
# photons	13,093,538	
p+ layer thickness	3.00	μm
Reflectivity free Silicon	0%	
Coupling Losses (FC/PC)	0%	
Silicon density	2.329	g/cm ³
Absorption	100.0000%	
p+ Implant survival factor	0.37	
# electrons gen.	4,909,238	

- Calculation: Pulse Energy divided by photon energy & survival factor
- Reflectivity & Coupling losses assumed similar
- → in accordance with measurements

Frequency [MHz]

2-bit DAC principle 1.7 gain (III)

Cd109 SOURCE on 300 Mio Frames

Individual Pixel Gain R(0-31)/C(32-63)

0	35			40 45							50					55 60																
0	17	17	18	17	18	17	19	22	19	19	19	20	18	19	20	0	20	0	22	20	20	23	19	21	22	0	21	0	18	0	21	21
	18	16	18	18	17	16	18	18	21	20	18	21	20	21	22	20	19	0	21	20	21	21	18	20	20	22	0	21	17	18	18	20
	16	16	16	20	0	0	0	0	18	19	21	18	18	17	20	21	0	20	18	21	18	18	20	17	18	20	17	18	0	0	0	19
	16	18	17	17	16	17	17	18	17	19	20	18	17	17	19	0		0	17	18	16	18	0	18	16	18	17	17	17	16	16	16
5	19	19	20	18	19	19	18	20	19	18	18	19	20	19	20	0	23	0	22	20	21	20	19	20	18	21	20	21	17	18	20	18
5	19	18	18	17	19	17	19	18	20	19	19	19	19	19	19	21	20	0	19	22	19	20	17	21	19	19	17	18	16	19	18	17
	18	18	18	19	16	21	18	19	19	20	18	17	19	19	19	19	0	20	17	19	17	17	17	16	16	18	17	18	17	0	17	19
	18	19	18	17	17	18	19	21	17	19	21	21	19	18	19	19	0	0	18	20	18	19	19	19	16	19	17	18	18	17	17	18
	18	19	19	18	18	18	19	20	20	20	20	19	20	20	19	0	23	0	20	20	20	21	19	19	17	21	19	20	18	19	20	19
10	17	16	16	17	17	17	17	18	18	19	19	19	17	18	20	19	19	0	19	20	18	17	17	19	17	17	11	18	17	18	17	18
10	19	17	18	19	18	18	20	17	18	20	17	19	23	19	18	19	0	19	18	21	19	19	21	19	20	19	19	18	18	20	19	21
	19	19	19	18	19	19	19	20	18	19	19	20	20	21	19	20	0	0	18	22	18	20	18	19	17	18	18	18	19	18	18	20
	17	18	19	17	17	18	17	19	18	20	18	18	18	20	19	0	20	0	19	22	19	21	19	20	19	22	17	21	18	21	19	21
	17	16	17	17	18	17	16	18	18	18	19	18	17	18	18	20	19	0	17	18	18	19	17	21	18	17	18	19	18	20	16	17
12	20	18	17	18	18	20	19	17	17	19	17	21	22	19	19	19	0	19	18	21	18	19	19	19	19	21	17	19	21	21	19	21
16	19	19	18	17	17	19	19	19	18	19	20	20	19	19	19	21	0	0	18	20	18	18	17	19	17	20	17	19	19	19	18	19
	19	19	18	17	17	17	18	19	18	20	18	18	18	17	20	0	22	0	16	19	19	19	18	18	18	21	19	21	18	20	19	21
	21	19	18	17	19	19	18	19	20	19	20	18	18	20	21	20	18	0	18	19	20	19	17	20	18	20	19	19	18	20	21	20
	20	19	17	19	18	19	20	17	18	20	20	21	20	21	18	19	0	19	20	19	18	18	19	18	18	21	19	20	21	22	19	20
20	18	19	18	16	18	17	17	19	18	18	18	18	20	18	18	21	0	0	17	19	17	19	17	18	16	19	18	19	18	19	17	19
20	19	19	19	19	17	19	19	20	20	20	19	20	21	19	20	0	19	0	18	20	19	20	19	21	20	20	21	21	19	20	22	20
	20	17	19	17	20	18	17	19	21	21	21	19	20	20	21	19	19	0	20	20	20	20	18	20	19	20	20	20	18	22	19	21
	19	18	17	20	18	18	20	18	18	21	20	20	20	19	20	18	0	20	18	20	18	17	18	18	18	20	18	19	19	18	18	21
	19	18	18	17	18	18	18	20	18	19	20	20	20	18	19	21	0	0	18	19	16	0	19	21	16	19	19	20	18	19	17	20
25	20	21	18	17	18	19	21	21	19	21	23	20	21	19	20	0	20	0	22	20	22	20	21	19	21	21	20	21	18	21	21	19
25	20	17	19	19	19	19	18	20	20	20	20	19	20	20	22	20	19	0	19	20	19	19	19	19	20	0	20	21	20	20	20	22
	18	18	17	18	17	18	19	17	17	22	19	19	20	22	19	18	0	21	19	21	18	19	19	19	20	21	19	19	20	19	18	22
	23	21	18	20	18	20	20	21	20	19	19	20	19	20	20	20	0	0	20	21	19	20	19	19	19	21	20	19	19	19	18	20
	19	20	20	17	20	20	21	21	20	21	21	20	20	20	21	0	21	0	21	22	21	21	21	22	21	21	21	21	20	21	21	21
30	22	17	17	18	20	20	19	19	21	20	19	21	20	20	23	20	20	0	19	20	20	20	19	21	19	22	20	21	20	22	20	20
	21	19	18	20	19	20	20	20	20	22	18	19	20	20	18	20	0	21	21	22	19	21	20	21	21	21	21	20	21	21	20	21
	19	21	19	20	20	20	20	21	'19	21	19	19	19	20	20	21	0	0	22	21	18	21	20	21	21	21	21	20	22	23	19	22

Cd109 SOURCE on 300 Mio Frames (3)

Peak FWHM ~ 3keV

Switcher Bit Shifts, Gain 1.7, 128ns OFFSET VALUES

Laser keeping P(31/44) open add. 5 row cycles

