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Galaxy rotation cuves

[Rubin, Ford, Thonnard 1980]

That’s so fast!
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If dark matter is a particle,  
what’s its spin?

 - - - - - - - We have no clue - - - - - - - 

So what about spin-2?

However, see: Garcia-Cely, Heck 2016
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Outline of the talk

1) Evidence for dark matter 

2) Introduction to bigravity 

3) Massive graviton as dark matter candidate 

4) Other observational constraints 

5) Conclusions
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Evidence for dark matter
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[Galaxy cluster SDSS J1038+4849 
Image credit: NASA/ESA]

Evidences for dark matter
Gravitational lensing Bullet cluster

CMB anisotropies

[Image credit: ESA and Planck collaboration]

N-body simulations

Millenium simulation project 
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/

etc etc etc

Large scale structure
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SDSS 
www.sdss.org



The cosmic pie today

Picture from http://www.ikp.kit.edu/edelweiss/english/darkmatter.php 
Credit: HAP / A. Chantelauze
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2015 Planck results:
Planck Collaboration 1502.01589

TBA
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Introduction to bigravity
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Field theories

massless massive

spin-0 Klein-Gordon Klein-Gordon

spin-1 Maxwell Proca

spin-2 (linearised)  
General relativity

(Fierz-Pauli) 
???
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Field theories

massless massive

spin-0 Klein-Gordon Klein-Gordon

spin-1 Maxwell Proca

spin-2 (linearised)  
General relativity

(Fierz-Pauli) 
Massive (bi)gravity
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Bigravity is the fully non-linear 
theory describing a massive and a 

massless spin-2 field  
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Action
S = mg

2 d 4x −gR(g)∫ +mf
2 d 4x − f R( f )∫ − 2m2 d 4x∫ V (g, f )+ d 4x −g∫ Lm (g,Φ)

Einstein-Hilbert Einstein-Hilbert Potential Matter

1) Free of the notorious 6th d.o.f. (Boulwere-Deser ghost) 
2) Invariant under simultaneous diff’s, Lorentz-invariant, etc

[Hassen & Rosen 1109.3515, 1111.2070]

deRham, Gabadadze 1007.0443 
deRham, Gabadadze, Tolley 1011.1232 
Hassan, Rosen 1103.6055, 1106.3344 
Hassan, Rosen, Schmidt-May 1109.3230

1) Standard kinetic term for 
symmetric 2-tensor for . . .  

2) 2 metric tensors g and f
3) Bare Planck masses 

mg and mf

V (g, f ) = −g βnen ( g−1 f )
n=0

4

∑
1) Parameters          are CC’s 

for g, f
2) Parameters             are 

interaction parameters 
3) Unique!

β0,β4

β1,β2,β3

1) Matter minimally 
coupled to g. Choice!

2) More general matter 
couplings possible 
(see my last talk)
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Mass spectrum
1) Consider linear fluctuations around proportional background                   :

2) A linear combination forms mass eigenstates: (c = 1)

massless mode massive mode mFP
2 = m2

1+α 2 (β1 + 2β2 + β3)

3) Background consistency relation

β0 + 3β1 + 3β2 + β3 =
1
α 2 (β1 + 3β2 + 3β3 + β4 ) ≡

Λ
m2

[Hassan, Rosen 1109.3515; Hassen, Schmidt-May, von Strauss 1208.1515]

Consistency between the equations now requires ⇤g = ⇤f ⌘ ⇤. Since we have set c = 1 this

relation generically fixes one of the �n parameters.4 This class of solutions thus corresponds

to the maximally symmetric solutions of GR. Flat space solutions with ⇤ = 0 require fixing

one of the �n and whenever we discuss flat backgrounds this will always be implicitly assumed.

For spacetimes admitting Poincaré or (Anti) de Sitter isometries the representation theory

of spin-2 fields is well known. It is therefore natural to study perturbations of the propor-

tional solutions. Perturbation theory in bimetric theory is notoriously challenging due to

the presence of the square root matrix in the interaction potential and the general problem

was only recently resolved [28–30]. For the proportional solutions, however, the situation

simplifies greatly.

We define linear fluctuations h, ` around the proportional backgrounds by,

gµ⌫ = ḡµ⌫ + hµ⌫ , fµ⌫ = ḡµ⌫ + `µ⌫ . (2.17)

The canonically normalised mass eigenstates are then defined through [22],

�Gµ⌫ =
m

Pl

1 + ↵2

�
hµ⌫ + ↵2`µ⌫

�
, (2.18a)

�Mµ⌫ =
↵m

Pl

1 + ↵2

(`µ⌫ � hµ⌫) , (2.18b)

where, for future reference, we also note the inverse relations,

hµ⌫ =
1

m
Pl

(�Gµ⌫ � ↵�Mµ⌫) , (2.19a)

`µ⌫ =
1

m
Pl

�
�Gµ⌫ + ↵�1�Mµ⌫

�
. (2.19b)

The parameter ↵ thus quantifies the mixing between the fluctuations. In terms of the mass

eigenstates (2.18) the quadratic part of the action (2.1) diagonalises into (indices are raised

and lowered using ḡµ⌫),

S(2) =

Z
d4x

p
|ḡ|


L(2)

GR

(�G) + L(2)

GR

(�M)� m2

FP

4

�
�Mµ⌫�M

µ⌫ � �M2

�

� 1

m
Pl

(�Gµ⌫ � ↵�Mµ⌫)T
µ⌫

�
, (2.20)

where L(2)

GR

is the quadratic theory obtained from the Einstein-Hilbert action including a

cosmological constant, i.e.
p|g|(R�2⇤). The detailed expression for this is given in eq. (B.7).

We have defined the Fierz-Pauli mass of the massive spin-2 field,

m
FP

⌘
p

�
1

+ 2�
2

+ �
3

m
Pl

⌘ ⇠m
Pl

. (2.21)

4Due to the aforementioned freedom of rescaling fµ⌫ , this constitutes no loss of generality but fixes a

redundant parameter. For general c it would instead provide a fourth order polynomial equation for c which

generically determines c = c(↵,�n) and thereby fully specifies the solution.
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We note that Vµ⌫ and Ṽµ⌫ as written in (2.10) are symmetric in their indices, although not

manifestly so. This follows from the fact that both S and S�1 are symmetric whenever their

indices are raised or lowered using either of gµ⌫ or fµ⌫ .3

The theory defined by the action (2.1) is generally covariant under the diagonal group

of common di↵eomorphisms. The fact that the interaction potential is covariant on its own

implies the following divergence identities (see e.g. [24]),

p
|g| gµ⇢r⇢Vµ⌫ = �

p
|f | fµ⇢r̃⇢Ṽµ⌫ , (2.13)

as well as the algebraic identities [25] (see also [26, 27]),

p
|g| g⇢µVµ⌫ +

p
|f | f⇢µṼµ⌫ �

p
|g|V �⇢⌫ = 0 , (2.14)

where V is the interaction potential (2.3) appearing in the action (2.1). For a covariantly

conserved source, the standard Bianchi identities, rµGµ⌫ = 0 and r̃µGµ⌫ = 0, imply the

constraint equations rµVµ⌫ = 0 and r̃µṼµ⌫ = 0. Due to the identity (2.13), these are

not independent and so in all only give 4 constraints. Apart from that, an additional scalar

constraint can be constructed [28] (which was first found in the Hamiltonian formulation [13]).

These 4+1 constraints serve to remove 5 dynamical modes from the 10+10 = 20 components

of the two tensor fields. The di↵eomorphism invariance removes 2 ⇥ 4 = 8 more. Bimetric

theory therefore propagates 20� 8� 4� 1 = 7 degrees of freedom. As we will see next, when

such a split makes physical sense, these degrees of freedom correspond to a massless spin-2

field (2) and a massive spin-2 field (5).

2.2 Proportional solutions & mass spectrum

An important class of solutions in bimetric theory without any matter sources are the pro-

portional solutions, defined by f̄µ⌫ = c2ḡµ⌫ . For such an ansatz the Bianchi constraints

immediately imply that c2 is a constant. In order to simplify notation we will set c2 = 1 in

what follows. This can be done without any loss of generality by scaling fµ⌫ and properly

redefining ↵ along with the �n. Such a scaling is possible since we do not couple fµ⌫ to matter

in our considerations, which gives rise to a redundancy in the parameter space.

For the proportional ansatz the bimetric vacuum equations reduce to [22],

g�eom : Gµ⌫(ḡ) + ⇤g ḡµ⌫ = 0 , (2.15a)

f�eom : Gµ⌫(ḡ) + ⇤f ḡµ⌫ = 0 , (2.15b)

with constants,

⇤g =
↵2m2

Pl

1 + ↵2

(�
0

+ 3�
1

+ 3�
2

+ �
3

) , (2.16a)

⇤f =
m2

Pl

1 + ↵2

(�
4

+ 3�
3

+ 3�
2

+ �
1

) . (2.16b)

3This can be proven either by a formal expansion of the square-root [22] or by matrix manipulations [23].
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|ḡ|


L(2)

GR

(�G) + L(2)

GR

(�M)� m2

FP

4

�
�Mµ⌫�M

µ⌫ � �M2

�

� 1

m
Pl

(�Gµ⌫ � ↵�Mµ⌫)T
µ⌫

�
, (2.20)

where L(2)

GR

is the quadratic theory obtained from the Einstein-Hilbert action including a

cosmological constant, i.e.
p|g|(R�2⇤). The detailed expression for this is given in eq. (B.7).

We have defined the Fierz-Pauli mass of the massive spin-2 field,

m
FP

⌘
p

�
1

+ 2�
2

+ �
3

m
Pl

⌘ ⇠m
Pl

. (2.21)

4Due to the aforementioned freedom of rescaling fµ⌫ , this constitutes no loss of generality but fixes a

redundant parameter. For general c it would instead provide a fourth order polynomial equation for c which

generically determines c = c(↵,�n) and thereby fully specifies the solution.

– 7 –

Marvin Lüben PPSMC 21/02/19 15/30



Limits

GR limit 
massless spin-2 field and dM decouples

MG limit 
massive spin-2 field

α ≪1 α ≫1
α =

mf

mg

hµν ∼ δGµν hµν ∼ δM µν

V ∼ 1
mPl

hµνδT
µν

Babichev, Crisostomi 1307.3640 
Akrami et al. 1503.07521 
Babichev et al. 1604.08564 1607.03497

Another GR limit:

2

Varying the action with respect to g and f yields two
sets of modified Einstein equations,

Gg
µ⌫ +m2V g

µ⌫ =
1

m2
g

Tµ⌫ , (3a)

↵2Gf
µ⌫ +m2V f

µ⌫ =0 , (3b)

where Gg and Gf are the Einstein tensors of g and f ,
respectively. The terms V g,f arising from variation of
the potential were derived in Ref. [1, 14]. Finally, the
stress-energy tensor of matter is defined as,

Tµ⌫ =
�2p�g

�
p�gLm

�gµ⌫
. (4)

III. MASS EIGENSTATES AND
GRAVITATIONAL FORCE

Bimetric gravity has a well defined mass spectrum
around proportional backgrounds, where the metrics are
conformally related as f̄ = c2ḡ with the real constant c,
determined by [2],

↵2
�
c�0 + 3c2�1 + 3c3�2 + c4�3

�

= �1 + 3c�2 + 3c2�3 + c3�4 . (5)

We consider small fluctuations around that background,

gµ⌫ = ḡµ⌫ + �gµ⌫ , fµ⌫ = f̄µ⌫ + �fµ⌫ . (6)

Plugging this ansatz into the Einstein equations and
keeping only terms up to linear order in the fluctuations,
one finds that a massless spin-2 field, �Gµ⌫ , and a massive
spin-2 field, �Mµ⌫ propagate on the proportional back-
ground [1, 2]. The massive mode has a Fierz-Pauli mass,

m2
FP = m2 1 + ↵2c2

↵2c2
c(�1 + 2�2c+ �3c

2) . (7)

The original metric fluctuations are linear combinations
of both mass eigenstates,

�gµ⌫ / �Gµ⌫ � ↵2�Mµ⌫ , (8a)

�fµ⌫ / �Mµ⌫ + c2�Gµ⌫ , (8b)

where we omitted the overall normalization.
When ↵ ⌧ 1, the fluctuation of the physical metric

gµ⌫ is almost aligned with the massless excitation. Since
matter fields couple to the metric perturbations �gµ⌫ ,
we expect to recover GR for ↵ ⌧ 1 [15]. Clearly, in
this parameter region there is no conflict with current
observational data.

For instance, let us consider a spherically symmetric
background [16–20]. The contribution to the Newtonian
potential coming from the massless mode is a Coulomb-
like term, ⇠ r�1, proportional to the inverse distance be-
tween the source and the test particle, while the massive
mode contributes a Yukawa-term ⇠ e�mFPr/r. Hence,

from eq. (8a) it follows that the coupling 1
m2

g
�gµ⌫T

µ⌫ will

produce the following linearized gravitational potential,

V (r) = � 1

M2
Pl

✓
1

r
� ↵2e�mFPr

r

◆
, (9)

where the physical Planck mass isM2
Pl = m2

g(1+↵2c2) [2].
Whenever the first term in the gravitational potential
dominates over the second one, the solution behaves ap-
proximately like GR and does not require a Vainshtein
mechanism. We can thus identify two parameter régimes
in which GR is restored,

1.) ↵ ⌧ 1,

2.) mFP � `�1,

where ` is the typical length scale of the system (e.g.
` ' 1AU for the Solar System).

IV. EXAMPLE: SOLAR SYSTEM

In this section, we demonstrate the general results dis-
cussed in the previous section in an explicit example:
the Solar System. For concreteness, we derive numerical
values for the Sun as central source of the gravitational
potential. Not all Solar System tests are based on this
scenario, so our arguments here should be viewed as qual-
itative. A detailed quantitative analysis is left for future
work. Our findings are summarised in fig. 1 and fig. 2.

A. Yukawa suppression

At the scale of 1AU ' 1.5 ⇥ 1013 cm, deviations from
the inverse square law for the gravitational force are con-
strained to be . 10�9 [21]. We aim at providing the
most conservative constraints on the bimetric parame-
ters. Hence, we use this bound (which is the most strin-
gent one) on deviations for any distance from the Sun.
Comparing the two contributions in (9), this requires,

↵2e�mFPr . 10�9. (10)

Deviations due to the massive mode are arbitrarily small
in both the previously identified parameter limits. The
blue line in fig. 1 represents the bound eq. (10) for the
case ↵ = 1. Therefore, in the blue-shaded region, the
Yukawa-like term in the gravitational potential is always
smaller than all observational bounds. A value for ↵
smaller than unity makes the deviations even smaller.
Local gravity tests inside the Solar System provide

strong constraints on deviations from GR down to scales
of ⇠ 10µm [21]. As a very rough estimate, we use eq. (10)
to define a critical spin-2 mass (for ↵ ' 1),

mcrit ' 2.6 eV, (11)

Consistency between the equations now requires ⇤g = ⇤f ⌘ ⇤. Since we have set c = 1 this

relation generically fixes one of the �n parameters.4 This class of solutions thus corresponds

to the maximally symmetric solutions of GR. Flat space solutions with ⇤ = 0 require fixing

one of the �n and whenever we discuss flat backgrounds this will always be implicitly assumed.

For spacetimes admitting Poincaré or (Anti) de Sitter isometries the representation theory

of spin-2 fields is well known. It is therefore natural to study perturbations of the propor-

tional solutions. Perturbation theory in bimetric theory is notoriously challenging due to

the presence of the square root matrix in the interaction potential and the general problem

was only recently resolved [28–30]. For the proportional solutions, however, the situation

simplifies greatly.

We define linear fluctuations h, ` around the proportional backgrounds by,

gµ⌫ = ḡµ⌫ + hµ⌫ , fµ⌫ = ḡµ⌫ + `µ⌫ . (2.17)

The canonically normalised mass eigenstates are then defined through [22],

�Gµ⌫ =
m

Pl
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�
, (2.18a)
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where, for future reference, we also note the inverse relations,
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m
Pl
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`µ⌫ =
1

m
Pl
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�
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The parameter ↵ thus quantifies the mixing between the fluctuations. In terms of the mass

eigenstates (2.18) the quadratic part of the action (2.1) diagonalises into (indices are raised

and lowered using ḡµ⌫),

S(2) =

Z
d4x
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where L(2)

GR

is the quadratic theory obtained from the Einstein-Hilbert action including a

cosmological constant, i.e.
p|g|(R�2⇤). The detailed expression for this is given in eq. (B.7).

We have defined the Fierz-Pauli mass of the massive spin-2 field,

m
FP
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�
1

+ 2�
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+ �
3

m
Pl
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4Due to the aforementioned freedom of rescaling fµ⌫ , this constitutes no loss of generality but fixes a

redundant parameter. For general c it would instead provide a fourth order polynomial equation for c which

generically determines c = c(↵,�n) and thereby fully specifies the solution.

– 7 –

Marvin Lüben PPSMC 21/02/19 16/30



3
Massive graviton as dark matter candidate
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Interaction vertices
Compute cubic (and higher order) action

�G3 �G2�M �G�M2 �M3

1,⇤ 0 1, ⇤, m2

FP

↵, ↵⇤, ↵m2

FP

, 1

↵ ,
⇤

↵ ,
m2

FP
↵

Table 1. Coe�cients of cubic interaction vertices (numerical factors neglected) in units of m�1
Pl .

Vertices with a dimensionless coe�cient are associated with two derivatives.

not possible. Again this is consistent with the general arguments of the previous section.

Of course, there may still be graviton production due to decay of the massive spin-2 field

mediated by SM interactions, but these will generically be heavily suppressed.

The third column displays the gravitational interaction between the massive and massless

spin-2 fields. It also captures the tree-level process of the inverse decay discussed later on with

respect to possible production mechanisms for the massive spin-2 field. We note that these

terms have no ↵ dependence, which already indicates that the massive spin-2 field gravitates

with the same strength as SM particles. That the gravitational stress-energy tensor of the

spin-2 field indeed coincides with the one obtained via the Noether procedure in flat space

follows directly from the general results of ref. [62] which we review in detail in appendix C.

For a confirmation of these arguments through an explicit calculation, see [19].

Finally, the last column displays the self-interactions of the massive spin-2 field. Here we

note that there are a variety of terms present and all come with factors of ↵. In particular, in

the small ↵ limit, some of these self-interactions will be enhanced as compared to standard

GR. This enhancement is particularly strong when ↵ is small and m
FP

is large.

�G4 �G3�M �G2�M2 �G�M3 �M4

1,⇤ 0 1, ⇤, m2

FP


1

, 
1

⇤, 
1

m2

FP

, 
3

, 
3

⇤, 
3

m2

FP

,


2

� 
4

�, 
4

↵2m2

g�2


1

2 {↵�1, 1,↵}, 
2

2 {↵�3,↵�1,↵}, 
3

2 {↵�2, 1,↵2}, 
4

2 {↵�4,↵�2, 1,↵2}

Table 2. Coe�cients of quartic interaction vertices (numerical factors neglected) in units of m�2
Pl .

Vertices with a dimensionless coe�cient are associated with two derivatives. In this table we have
used the notation � = ↵2m2

Pl(�1 + �2)/(1 + ↵2) and m2
g = m2

Pl/(1 + ↵2).
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All vertices are 
Planck mass 
suppressed

Like in GR

No decay from massive 
to massless spin-2

No   -dependence. 
Massive spin-2 gravitates just like 
SM

Different   -dependency and 
possible enhancement

α

α

Perturbative expansion 
valid for energies below

of “the same order” as V
(j)
m . Note that this is of course somewhat arbitrary since the ratio

between neighbouring terms in the rearranged series is typically ↵1/p. Nevertheless, it allows

us to rearrange the perturbation series in the following manner:

V
(0)

2

+ V
(0)

3

+ . . .+ V
(0)

2+p�1

+ V
(1)

2

+ V
(1)

3

+ . . .+ V
(1)

2+p + V
(0)

2+p + V
(0)

2+p+1

+ . . .+ V
(0)

2+2p�1

+ V
(2)

2

+ V
(2)

3

+ . . .+ V
(2)

2+p + V
(1)

2+p+1

+ . . .+ V
(1)

2+2p�1

+ V
(0)

2+2p + . . .+ V
(0)

2+3p�1

+ . . .

+ V
(j)
2

+ V
(j)
3

+ . . .+ V
(j)
2+p + V

(j�1)

2+p+1

+ . . .+ V
(j�1)

2+2p�1

+ . . .+ V
(0)

2+jp + . . .+ V
(0)

2+(j+1)p�1

+ . . . (4.21)

Here, every line corresponds to terms of “the same order” in the perturbative expansion in

the following sense: A line with dominant term V
(j)
2

⇠ ↵j+2/p contains all terms which are of

the form ↵j+(2+k)/p where k = 0, 1, 2, . . . , p� 1 (note however that for a given line the series

is not strictly ordered from left to right since, as noted, e.g. V (j)
m and V

(0)

m+jp are always of the

exact same order). The next line then starts with dominant term V
(j+1)

2

⇠ ↵j+1+2/p and so

on. Therefore lower lines are always more suppressed than the lines above it. It is important

to note that every order contains a finite number of terms. Moreover, from the definition in

(4.20) we have that V (j)
m = 0 for j > 2m. Therefore, for example, the 5 first lines are su�cient

for considering the influence of higher order terms on the quadratic vertices and the 7 first

lines are su�cient for considering the influence on the quadratic and cubic vertices together

and so on.

The kinetic terms have been left out of the discussion so far. They contain two derivatives

and give, schematically,

@2hm ⇠ E2

✓
E

↵m
Pl

◆m ⇣
↵m + ↵m+1 + . . .+ ↵2m

⌘
,

↵2@2`m ⇠ E2

✓
E

↵m
Pl

◆m ⇣
↵2 + ↵3 + . . .+ ↵m+2

⌘
. (4.22)

where we also have taken into account that the `m vertices coming from the Einstein-Hilbert

term for fµ⌫ will have an additional factor of ↵2 in front. It is clear from the structure of (4.22)

that the terms can be rearranged in the same way as in (4.21) to give a valid perturbative

expansion for E < ↵m
Pl

. The kinetic and potential terms will indeed have the same general

structure in their expansions. In other words, the structure in (4.21) represents the expansion

of the full bimetric action around maximally symmetric backgrounds in terms of the mass

eigenstates.

The above discussion illustrates the behaviour of the expansion near the perturbativity

bound E < ↵m
Pl

. From this we can also understand how the higher order vertices start

to influence the physics near these energies. In particular, if we required that none of the

higher order vertices play any role at the level of cubic interactions, we would have to restrict
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Production mechanisms
1) Usual scenario via freeze-out can be realized in a certain parameter region via self-

thermalization. MeV to GeV scale DM 

The   -dependence cancels outα

SM

SM

�G
1

mPl

1

mPl

�M

�M SM

SM

�M
↵

mPl

1

↵mPl

�M

�M

Freeze-in mediated via s-channel exchange of

the massless spin-2 �G.

Freeze-in mediated via s-channel exchange of

the massive spin-2 �M ; the ↵ factors cancel

out and the amplitude is the same as for the

massless �G mediation.

Figure 2. Tree-level diagrams of s-channel exchanges which are responsible for freeze-in production.

being the ratio of tensor-to-scalar primordial perturbation amplitudes measured by the Planck

experiment [66]. Realistically, the reheating temperature will be at least a factor of a few

lower, and the heavy spin-2 mass can be estimated to be at least as heavy as 1010 GeV.

As we will show in the following, this requires ↵ ⌧ 1, otherwise the spin-2 particle would

decay too rapidly. Recall, however, that we cannot take ↵ to be arbitrarily small because

our perturbative expansion would otherwise break down as discussed in detail in Sec. 4.1.2.

In fact, we find that this precludes the possibility of gravitational DM production within our

framework: As shown in Fig. 4, the region in the (↵,m
FP

) parameter space where gravitational

production is successful is actually excluded by our perturbativity condition.

Freeze-in. Even if thermal equilibrium is never attained, it is possible to populate the

Universe with a nearly decoupled species via a slow “leakage” of the thermal bath. This is

the so-called freeze-in mechanism [67], which results in a non-thermalised sector, composed

of the heavy spin-2 particles in our case. In this setup two SM particles from the thermal

bath annihilate and produce a heavy spin-2 pair via s-channel graviton exchange. Depending

on the dynamics of reheating, the generation of DM can proceed either during reheating or

in the following radiation dominated era, see [68, 69]. This process is very slow and never

counterbalanced by the opposite reaction because the heavy spin-2 abundance remains well

below the thermal one at all times.

In our setup, in addition to the usual massless graviton �G exchange channel, freeze-in

can also proceed via exchange of the heavy spin-2 field �M itself. The two channels give

identical results since the ↵ suppression for the SMSM ! �M vertex is compensated by the

1/↵ enhancement of the �M self-interaction �M3. These production channels are illustrated

in Figure 2.
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�G
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mPl

1

mPl

�M
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↵

mPl

1

↵mPl

�M

�M

Freeze-in mediated via s-channel exchange of

the massless spin-2 �G.

Freeze-in mediated via s-channel exchange of

the massive spin-2 �M ; the ↵ factors cancel

out and the amplitude is the same as for the

massless �G mediation.

Figure 2. Tree-level diagrams of s-channel exchanges which are responsible for freeze-in production.

being the ratio of tensor-to-scalar primordial perturbation amplitudes measured by the Planck

experiment [66]. Realistically, the reheating temperature will be at least a factor of a few

lower, and the heavy spin-2 mass can be estimated to be at least as heavy as 1010 GeV.

As we will show in the following, this requires ↵ ⌧ 1, otherwise the spin-2 particle would

decay too rapidly. Recall, however, that we cannot take ↵ to be arbitrarily small because

our perturbative expansion would otherwise break down as discussed in detail in Sec. 4.1.2.

In fact, we find that this precludes the possibility of gravitational DM production within our

framework: As shown in Fig. 4, the region in the (↵,m
FP

) parameter space where gravitational

production is successful is actually excluded by our perturbativity condition.

Freeze-in. Even if thermal equilibrium is never attained, it is possible to populate the

Universe with a nearly decoupled species via a slow “leakage” of the thermal bath. This is

the so-called freeze-in mechanism [67], which results in a non-thermalised sector, composed

of the heavy spin-2 particles in our case. In this setup two SM particles from the thermal

bath annihilate and produce a heavy spin-2 pair via s-channel graviton exchange. Depending

on the dynamics of reheating, the generation of DM can proceed either during reheating or

in the following radiation dominated era, see [68, 69]. This process is very slow and never

counterbalanced by the opposite reaction because the heavy spin-2 abundance remains well

below the thermal one at all times.

In our setup, in addition to the usual massless graviton �G exchange channel, freeze-in

can also proceed via exchange of the heavy spin-2 field �M itself. The two channels give

identical results since the ↵ suppression for the SMSM ! �M vertex is compensated by the

1/↵ enhancement of the �M self-interaction �M3. These production channels are illustrated

in Figure 2.
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Thermal 
bath

DM

The inverse process will be 
subdominant at all times

3) Freeze-in in mechanism relies on a slow leakage of the thermal bath during reheating or 
radiation-domination
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Decay & constraints
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1) Heavy spin-2 can decay via all 
kinematically allowed channel (most 
important: decay into photons, 
neutrinos) 

2) Validity of perturbative expansion 

3) Production via freeze-in requires is 
constrained by overproduction of 
tensor modes in CMB to 

4) Stability on cosmological scales

we already mentioned, the contribution of the �M3 vertex to the production rate is the same

as the �G�M2 one. Moreover, the diagram with the quartic vertex has an additional factor

of E
↵mPl

. Hence our perturbative bound E < ↵m
Pl

is enough to trust our expressions derived

with the cubic vertices only. Higher order vertices will only contribute a finite number of

corrections to our estimates, proportional to increasing powers of E
↵mPl

< 1, and can thus be

safely ignored.

5.2 Decay and possible signatures

Since the heavy spin-2 particle does not carry any of the SM charges (which automatically

follows from the blindness of gravity to said quantum numbers), it decays universally into all

the kinematically allowed channels, i.e. into all SM particles X with masses mX  m
FP

/2.

The universality of the decay processes is a feature that our bimetric DM model shares with,

for instance, Kaluza-Klein DM [71]. However, interestingly, in bimetric DM the massive

eigenmode �Mµ⌫ cannot decay into massless modes. In other words, there is no graviton

production, nor gravitational waves signals, associated to bimetric DM decay.

The decay width into SM particle-antiparticle pairs X is given by [71],

�(�M ! XX) =
CX

80⇡

↵2m3

FP

m2

Pl

fX

✓
m2

X

m2

FP

◆
, (5.6)

where the coe�cients CX are gathered in Table 5.2 and the functions fX are of the form,

fV0(y) = 1 , (5.7)

fV (y) = (1� 4y)
1
2

✓
13

12
+

14

39
y +

4

13
y2
◆

, (5.8)

ff (y) = (1� 4y)
3
2

✓
1 +

8

3
y

◆
, (5.9)

fS(y) = (1� 4y)
5
2 , (5.10)

for massless vector bosons, massive vector bosons, fermions and scalar bosons, respectively.

X : � g Z W e, µ, ⌧ , ⌫e, ⌫µ, ⌫⌧ u, d, c, s, t, b h

CX : 1/2 4 1/2 1 1/4 3/4 1/12

Table 3. The coe�cients CX entering eq. (5.6).

The most obvious upper bound on the mass m
FP

comes from imposing that the DM

be stable on cosmological timescales. Requiring that its lifetime exceeds the age of the

Universe ⌧U = 13.8 Gyr implies ↵2/3m
FP

. 0.13 GeV. From this constraint we can then

derive a consistency upper bound on the DM mass within our perturbative framework. Our

expansion (as well as the expression for the width in eq. (5.6)) is valid for m
FP

 ↵m
Pl

.

This limit intersects the bound on the lifetime at m
FP

⇡ 6.6 ⇥ 106 GeV. Consequently, as
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remarked before, gravitational particle production is not a viable mechanism to generate the

DM as it only operates e�ciently for much higher masses. Furthermore, the viable range for

production via freeze-in is shrunk to,

1 TeV . m
FP

. 6.6⇥ 103TeV . (5.11)

Given this mass range of the heavy spin-2 field, we can search for distinguishing indirect

decay signals. In fact, even tighter constraints than that of eq. (5.11) can be derived by using

the (non)observation of SM particle fluxes due to DM decay in di↵erent channels. In general,

the constraints on the individual decay widths are heavily dependent on the mass and the

propagation properties of the primary and secondary decay products, see for example [72].

We gathered the most stringent constraints from DM indirect detection experiments in Fig. 3,

where we show the bounds on the inverse partial decay widths as a function of the DM mass.

At low DM mass, the strongest constraints for our model come from the Fermi LAT

searches for �-ray lines [5]: these are the strongest constraints overall, hovering over the 1029s

for the DM lifetime, but only apply up to masses of the order of a TeV. In the intermediate

region, for which TeV . m
FP

. 10 TeV, the most competitive limits come from the antiproton

flux measured by PAMELA [73] instead; the fluxes obtained by the AMS-02 experiment

are in the same range [74]. Moreover, the constraints from the Extragalactic Gamma Ray

Background of DM decaying into all SM channels are also in the same ballpark, see [75] —

we report here only the most significant ones from the muonic, tauonic, and bottom quark

channels. Finally, for the highest mass range we are interested in, m & 10 TeV, the searches

for neutrino lines in IceCube provide the most relevant limits, around 1/�⌫e & 1028 s [76].

Roughly speaking, we can see that the limit obtained for a DM mass in the range (5.11)

is approximately 10 orders of magnitude stronger than the bare limit coming from the lifetime

of the Universe. In the perturbative regime this translates into an upper limit on the mass of

1 TeV . m
FP

. 66 TeV . (5.12)

This very limited mass range for heavy spin-2 DM is one of the predictions of our model: a

measured DM mass within this narrow range would be a strong indication in support of this

model.

In Fig. 4 we collect the strongest constraints on the total decay width, mostly coming from

the DM decay into photons and neutrinos, together with the perturbativity limit. We check

them against the di↵erent mass ranges available for freeze-in production. The plot shows

the available (↵,m
FP

) parameter space for bimetric spin-2 DM: the mass of the heavy spin-2

particle is constrained to be in the 1 to 100 TeV range, while the value of ↵ is approximately

between 10�11 and 10�15. Translating the latter to the value pertaining to the massive spin-2

self-interactions, we find this scale to be in the 103 GeV to 108 GeV range.

To summarise: The highest and lowest viable values for the mixing parameter ↵ come

from intersecting the available mass range for freeze-in production in (5.5) with the require-

ment of a long enough DM lifetime and the perturbativity bound, respectively. The upper
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we already mentioned, the contribution of the �M3 vertex to the production rate is the same

as the �G�M2 one. Moreover, the diagram with the quartic vertex has an additional factor

of E
↵mPl

. Hence our perturbative bound E < ↵m
Pl

is enough to trust our expressions derived

with the cubic vertices only. Higher order vertices will only contribute a finite number of

corrections to our estimates, proportional to increasing powers of E
↵mPl

< 1, and can thus be

safely ignored.

5.2 Decay and possible signatures

Since the heavy spin-2 particle does not carry any of the SM charges (which automatically

follows from the blindness of gravity to said quantum numbers), it decays universally into all

the kinematically allowed channels, i.e. into all SM particles X with masses mX  m
FP

/2.

The universality of the decay processes is a feature that our bimetric DM model shares with,

for instance, Kaluza-Klein DM [71]. However, interestingly, in bimetric DM the massive

eigenmode �Mµ⌫ cannot decay into massless modes. In other words, there is no graviton

production, nor gravitational waves signals, associated to bimetric DM decay.

The decay width into SM particle-antiparticle pairs X is given by [71],

�(�M ! XX) =
CX

80⇡

↵2m3

FP

m2

Pl

fX

✓
m2

X

m2

FP

◆
, (5.6)

where the coe�cients CX are gathered in Table 5.2 and the functions fX are of the form,

fV0(y) = 1 , (5.7)

fV (y) = (1� 4y)
1
2

✓
13

12
+

14

39
y +

4

13
y2
◆

, (5.8)

ff (y) = (1� 4y)
3
2

✓
1 +

8

3
y

◆
, (5.9)

fS(y) = (1� 4y)
5
2 , (5.10)

for massless vector bosons, massive vector bosons, fermions and scalar bosons, respectively.

X : � g Z W e, µ, ⌧ , ⌫e, ⌫µ, ⌫⌧ u, d, c, s, t, b h

CX : 1/2 4 1/2 1 1/4 3/4 1/12

Table 3. The coe�cients CX entering eq. (5.6).

The most obvious upper bound on the mass m
FP

comes from imposing that the DM

be stable on cosmological timescales. Requiring that its lifetime exceeds the age of the

Universe ⌧U = 13.8 Gyr implies ↵2/3m
FP

. 0.13 GeV. From this constraint we can then

derive a consistency upper bound on the DM mass within our perturbative framework. Our

expansion (as well as the expression for the width in eq. (5.6)) is valid for m
FP

 ↵m
Pl

.

This limit intersects the bound on the lifetime at m
FP

⇡ 6.6 ⇥ 106 GeV. Consequently, as
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The generation of DM can be described by a system of coupled Boltzmann equations as

in [70], where the thermally averaged cross section is given by h�vi ⇠ T 2/m4

Pl

[68, 69]. The

only relevant di↵erence between the two possible production epochs (reheating or radiation

domination) is the scaling of the Hubble rate H ⇠ ⇢1/2: in the first case ⇢ / a�3/2 whereas

in the second case ⇢ / T 2 / a�2. Depending on the e�ciency of the reheating process,

generally parametrised as ✏2
rh

= ⇡2g⇤T
4

rh

/90m2

Pl

H2

e  1 with g⇤ = 106.75 being the total

number of relativistic degrees of freedom during reheating (which we take to be those of the

SM only), the ranges of spin-2 masses for which it is possible to generate the correct DM

abundance are,

104 GeV . m
FP

. 1017 GeV ✏
rh

= 1

107 GeV . m
FP

. 1016 GeV ✏
rh

= 0.1 (5.3)

1010 GeV . m
FP

. 1015 GeV ✏
rh

= 0.01 .

One can also estimate the total DM abundance directly in radiation domination: matching

the observed DM abundance ⌦
DM

via freeze-in in this case means [69],

m
FP

⇡ ⌦
DM

m3

Pl

⌦
b

T 3

rh

m
p

⌘
b

, (5.4)

where m
p

is the proton mass, ⌦
b

the abundance of baryons, and ⌘
b

⇡ 10�9 the baryon

asymmetry. Once again, since the scale of inflation cannot be too high in order to avoid

overproduction of tensor modes (not observed in the CMB), this implies that the heavy

spin-2 mass will be constrained to the range,

1 TeV . m
FP

. 1011 GeV . (5.5)

This shows that, in principle, freeze-in is a possible production mechanism for our spin-2

DM. However, we still need to combine this ↵-independent result with the requirement of

perturbativity. As an illustration of the discussion at the end of Sec. 4.1.2, consider the

following vertices and their contribution to the production via freeze-in,

cubic: �G�M2 : E3/m
Pl

, �M3 : E3/↵m
Pl

,

quartic: �G�M3 : E4/↵m2

Pl

, �M4 : E4/↵2m2

Pl

.

It is clear that, even for energies below the perturbativity bound, E < ↵m
Pl

, both the �M3

vertex and the �M4 vertex dominate over the cubic one, �G�M2, for ↵ < 1. In order to

ensure that the above cubic terms are dominant over the quartic ones, we would have to

impose the stronger bound E < ↵2m
Pl

. Were we to go further in the expansion, demanding

a “safe” order ↵ suppression for everything beyond the cubic order we would recover the

condition E < ↵7m
Pl

as derived in section 4.1.2. However, when computing the actual

production amplitudes, we need to look at the complete diagrams, SMSM ! �G ! �M �M

and SMSM ! �M ! �M �M , and compare them to SMSM ! �M ! �M �M �M . Then, as
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we already mentioned, the contribution of the �M3 vertex to the production rate is the same

as the �G�M2 one. Moreover, the diagram with the quartic vertex has an additional factor

of E
↵mPl

. Hence our perturbative bound E < ↵m
Pl

is enough to trust our expressions derived

with the cubic vertices only. Higher order vertices will only contribute a finite number of

corrections to our estimates, proportional to increasing powers of E
↵mPl

< 1, and can thus be

safely ignored.

5.2 Decay and possible signatures

Since the heavy spin-2 particle does not carry any of the SM charges (which automatically

follows from the blindness of gravity to said quantum numbers), it decays universally into all

the kinematically allowed channels, i.e. into all SM particles X with masses mX  m
FP

/2.

The universality of the decay processes is a feature that our bimetric DM model shares with,

for instance, Kaluza-Klein DM [71]. However, interestingly, in bimetric DM the massive

eigenmode �Mµ⌫ cannot decay into massless modes. In other words, there is no graviton

production, nor gravitational waves signals, associated to bimetric DM decay.

The decay width into SM particle-antiparticle pairs X is given by [71],

�(�M ! XX) =
CX

80⇡

↵2m3

FP

m2

Pl

fX

✓
m2

X

m2

FP

◆
, (5.6)

where the coe�cients CX are gathered in Table 5.2 and the functions fX are of the form,

fV0(y) = 1 , (5.7)

fV (y) = (1� 4y)
1
2

✓
13

12
+

14

39
y +

4

13
y2
◆

, (5.8)

ff (y) = (1� 4y)
3
2

✓
1 +

8

3
y

◆
, (5.9)

fS(y) = (1� 4y)
5
2 , (5.10)

for massless vector bosons, massive vector bosons, fermions and scalar bosons, respectively.

X : � g Z W e, µ, ⌧ , ⌫e, ⌫µ, ⌫⌧ u, d, c, s, t, b h

CX : 1/2 4 1/2 1 1/4 3/4 1/12

Table 3. The coe�cients CX entering eq. (5.6).

The most obvious upper bound on the mass m
FP

comes from imposing that the DM

be stable on cosmological timescales. Requiring that its lifetime exceeds the age of the

Universe ⌧U = 13.8 Gyr implies ↵2/3m
FP

. 0.13 GeV. From this constraint we can then

derive a consistency upper bound on the DM mass within our perturbative framework. Our

expansion (as well as the expression for the width in eq. (5.6)) is valid for m
FP

 ↵m
Pl

.

This limit intersects the bound on the lifetime at m
FP

⇡ 6.6 ⇥ 106 GeV. Consequently, as
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we already mentioned, the contribution of the �M3 vertex to the production rate is the same

as the �G�M2 one. Moreover, the diagram with the quartic vertex has an additional factor

of E
↵mPl

. Hence our perturbative bound E < ↵m
Pl

is enough to trust our expressions derived

with the cubic vertices only. Higher order vertices will only contribute a finite number of

corrections to our estimates, proportional to increasing powers of E
↵mPl

< 1, and can thus be

safely ignored.

5.2 Decay and possible signatures

Since the heavy spin-2 particle does not carry any of the SM charges (which automatically

follows from the blindness of gravity to said quantum numbers), it decays universally into all

the kinematically allowed channels, i.e. into all SM particles X with masses mX  m
FP

/2.

The universality of the decay processes is a feature that our bimetric DM model shares with,

for instance, Kaluza-Klein DM [71]. However, interestingly, in bimetric DM the massive

eigenmode �Mµ⌫ cannot decay into massless modes. In other words, there is no graviton

production, nor gravitational waves signals, associated to bimetric DM decay.

The decay width into SM particle-antiparticle pairs X is given by [71],

�(�M ! XX) =
CX

80⇡

↵2m3

FP

m2

Pl

fX

✓
m2

X

m2

FP

◆
, (5.6)

where the coe�cients CX are gathered in Table 5.2 and the functions fX are of the form,

fV0(y) = 1 , (5.7)

fV (y) = (1� 4y)
1
2

✓
13

12
+

14

39
y +

4

13
y2
◆

, (5.8)

ff (y) = (1� 4y)
3
2

✓
1 +

8

3
y

◆
, (5.9)

fS(y) = (1� 4y)
5
2 , (5.10)

for massless vector bosons, massive vector bosons, fermions and scalar bosons, respectively.

X : � g Z W e, µ, ⌧ , ⌫e, ⌫µ, ⌫⌧ u, d, c, s, t, b h

CX : 1/2 4 1/2 1 1/4 3/4 1/12

Table 3. The coe�cients CX entering eq. (5.6).

The most obvious upper bound on the mass m
FP

comes from imposing that the DM

be stable on cosmological timescales. Requiring that its lifetime exceeds the age of the

Universe ⌧U = 13.8 Gyr implies ↵2/3m
FP

. 0.13 GeV. From this constraint we can then

derive a consistency upper bound on the DM mass within our perturbative framework. Our

expansion (as well as the expression for the width in eq. (5.6)) is valid for m
FP

 ↵m
Pl

.

This limit intersects the bound on the lifetime at m
FP

⇡ 6.6 ⇥ 106 GeV. Consequently, as

– 30 –
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5) Can the massive gravitons clump and form halos? 
Yes! Make Geon („gravitational-electromagnetic entity“ a la Wheeler) out of 
massive gravitons, but only first attempt so far.

Some comments
1) The phenomenon dubbed Dark Matter is a manifestation of gravity itself 
2) Its coupling to the standard model is naturally Planck-suppressed, and 

additionally by alpha 
3) Massive spin-2 field gravitates just like SM 
4) The massive spin-2 field is cold (large mass) and behaves like dust (small 

self-interactions)

Wheeler, Phys. Rev. 97 (1955) 511–536  
Aoki et al. 1710.05606

Babichev et al. 1604.08564 1607.03497
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4
Other observational constraints
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Local tests Will 1403.7377

1) The usual tests of the Inverse-
Square-law apply, but 

2) Take into account Vainshtein 
mechanism: 

3) For a spin-2 mass of TeV scale, the 
Vainshtein radius is tiny

λ = 1
mFP

2

Varying the action with respect to g and f yields two
sets of modified Einstein equations,

Gg
µ⌫ +m2V g

µ⌫ =
1

m2
g

Tµ⌫ , (3a)

↵2Gf
µ⌫ +m2V f

µ⌫ =0 , (3b)

where Gg and Gf are the Einstein tensors of g and f ,
respectively. The terms V g,f arising from variation of
the potential were derived in Ref. [1, 14]. Finally, the
stress-energy tensor of matter is defined as,

Tµ⌫ =
�2p�g

�
p�gLm

�gµ⌫
. (4)

III. MASS EIGENSTATES AND
GRAVITATIONAL FORCE

Bimetric gravity has a well defined mass spectrum
around proportional backgrounds, where the metrics are
conformally related as f̄ = c2ḡ with the real constant c,
determined by [2],

↵2
�
c�0 + 3c2�1 + 3c3�2 + c4�3

�

= �1 + 3c�2 + 3c2�3 + c3�4 . (5)

We consider small fluctuations around that background,

gµ⌫ = ḡµ⌫ + �gµ⌫ , fµ⌫ = f̄µ⌫ + �fµ⌫ . (6)

Plugging this ansatz into the Einstein equations and
keeping only terms up to linear order in the fluctuations,
one finds that a massless spin-2 field, �Gµ⌫ , and a massive
spin-2 field, �Mµ⌫ propagate on the proportional back-
ground [1, 2]. The massive mode has a Fierz-Pauli mass,

m2
FP = m2 1 + ↵2c2

↵2c2
c(�1 + 2�2c+ �3c

2) . (7)

The original metric fluctuations are linear combinations
of both mass eigenstates,

�gµ⌫ / �Gµ⌫ � ↵2�Mµ⌫ , (8a)

�fµ⌫ / �Mµ⌫ + c2�Gµ⌫ , (8b)

where we omitted the overall normalization.
When ↵ ⌧ 1, the fluctuation of the physical metric

gµ⌫ is almost aligned with the massless excitation. Since
matter fields couple to the metric perturbations �gµ⌫ ,
we expect to recover GR for ↵ ⌧ 1 [15]. Clearly, in
this parameter region there is no conflict with current
observational data.

For instance, let us consider a spherically symmetric
background [16–20]. The contribution to the Newtonian
potential coming from the massless mode is a Coulomb-
like term, ⇠ r�1, proportional to the inverse distance be-
tween the source and the test particle, while the massive
mode contributes a Yukawa-term ⇠ e�mFPr/r. Hence,

from eq. (8a) it follows that the coupling 1
m2

g
�gµ⌫T

µ⌫ will

produce the following linearized gravitational potential,

V (r) = � 1

M2
Pl

✓
1

r
� ↵2e�mFPr

r

◆
, (9)

where the physical Planck mass isM2
Pl = m2

g(1+↵2c2) [2].
Whenever the first term in the gravitational potential
dominates over the second one, the solution behaves ap-
proximately like GR and does not require a Vainshtein
mechanism. We can thus identify two parameter régimes
in which GR is restored,

1.) ↵ ⌧ 1,

2.) mFP � `�1,

where ` is the typical length scale of the system (e.g.
` ' 1AU for the Solar System).

IV. EXAMPLE: SOLAR SYSTEM

In this section, we demonstrate the general results dis-
cussed in the previous section in an explicit example:
the Solar System. For concreteness, we derive numerical
values for the Sun as central source of the gravitational
potential. Not all Solar System tests are based on this
scenario, so our arguments here should be viewed as qual-
itative. A detailed quantitative analysis is left for future
work. Our findings are summarised in fig. 1 and fig. 2.

A. Yukawa suppression

At the scale of 1AU ' 1.5 ⇥ 1013 cm, deviations from
the inverse square law for the gravitational force are con-
strained to be . 10�9 [21]. We aim at providing the
most conservative constraints on the bimetric parame-
ters. Hence, we use this bound (which is the most strin-
gent one) on deviations for any distance from the Sun.
Comparing the two contributions in (9), this requires,

↵2e�mFPr . 10�9. (10)

Deviations due to the massive mode are arbitrarily small
in both the previously identified parameter limits. The
blue line in fig. 1 represents the bound eq. (10) for the
case ↵ = 1. Therefore, in the blue-shaded region, the
Yukawa-like term in the gravitational potential is always
smaller than all observational bounds. A value for ↵
smaller than unity makes the deviations even smaller.
Local gravity tests inside the Solar System provide

strong constraints on deviations from GR down to scales
of ⇠ 10µm [21]. As a very rough estimate, we use eq. (10)
to define a critical spin-2 mass (for ↵ ' 1),

mcrit ' 2.6 eV, (11)

TeV range

3

FIG. 1: For the Sun as central source, this figure
indicates deviations from GR in the Newtonian force,
for distances r to the test particle as a function of the
spin-2 mass mFP. For large mFP and large r, the
contribution from the massive mode is su�ciently
suppressed, yielding the blue-shaded region. For small
mFP and small r, the Vainshtein mechanism restores
GR, yielding the orange-shaded region. Below 10µm no
observational constraints exist.

above which no deviations from GR are detectable via
observations in the Solar System. This is indicated by
the green-shaded region in fig. 1.

For mFP � mcrit and in the blue-shaded region of
e↵ective Yukawa suppression, the Vainshtein mechanism
is certainly not needed to restore GR.

B. Vainshtein regime

Close to the source, nonlinear terms become as impor-
tant as the linear ones in a way, such that GR is restored.
This is the well-known Vainshtein mechanism [6] and it is
active within a sphere defined by the Vainshtein radius,

rV =

✓
rS
m2

FP

◆1/3

(12)

around an object of mass M with Schwarzschild radius
rS = (1 + ↵2c2)M/M2

Pl [16, 20]. Even though the ex-
pression derived in Ref. [10] seems to di↵er by a numer-
ical factor (which is not manifestly positive) from (12),
the scale is the same as long as the parameters satisfy
�n ⇠ O(1).3

3
We emphasize that the value for the Vainshtein radius is derived

assuming r < m�1
FP. For the Solar System, this is not an is-

sue since the intersection of the lines corresponding to rV and

m�1
FP lies close to the observable threshold of ⇠ 10µm. The re-

gion where m�1
FP ⇠ rV should be treated more carefully, but can

definitely be brought in agreement with data by making ↵ small.

FIG. 2: This figure shows the allowed parameter regions
in the ↵-mFP-plane at the length scale r = 1AU. For
large mFP, the parameter ↵ is not constrained to be
small thanks to the Yukawa suppression in the
potential. For small mFP, it is unconstrained due to the
Vainshtein mechanism. Only for masses from 10�24 to
10�16 eV observations require ↵ . 10�5.

Well inside the Vainshtein radius, deviations from the
inverse-square law of the gravitational force scale like
(r/rV )3 [16, 18] and hence, in order to satisfy (10), we
require (for ↵ ' 1),

r

rV
. 10�3 . (13)

Choosing a solar mass objectM = M� defines the orange
line in fig. 1 as a rough estimate for the threshold of
an e↵ective Vainshtein mechanism. Consequently, well
inside the orange-shaded region, the gravitational force
is certainly indistinguishable from GR for any bimetric
parameters.

C. Constraints on the spin-2 coupling

Only in the region left white in fig. 1, significant devi-
ations from GR could occur. However, we still have the
free parameter ↵, which we can use to suppress the ex-
tra term in the Newtonian potential. The most stringent
bound comes from close to the Vainshtein radius, where
the observational bound eq. (10) requires,

↵ . 10�5, (14)

see also fig. 2. Then, for any mass of the spin-2, de-
viations from the GR prediction are undetectable with
current experimental precision.
For very small spin-2 masses, the Vainshtein radius of

the Sun becomes larger than the Solar System itself. As a
conservative estimate, evaluating eq. (13) at r = 100AU
implies mFP . 5 ⇥ 10�28eV. For smaller spin-2 masses

Vainshtein, Phys.Lett. 39B (1972) 393-394

Babichev, Crisostomi 1307.3640
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Example: solar system

Yukawa suppression

Vainshtein
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mFP [eV]

Inclusion plot at r=1AU

Lüben, Mörtsell, Schmidt-May 1812.08686

Conservative estimate:

r
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2

Varying the action with respect to g and f yields two
sets of modified Einstein equations,

Gg
µ⌫ +m2V g

µ⌫ =
1

m2
g

Tµ⌫ , (3a)

↵2Gf
µ⌫ +m2V f

µ⌫ =0 , (3b)

where Gg and Gf are the Einstein tensors of g and f ,
respectively. The terms V g,f arising from variation of
the potential were derived in Ref. [1, 14]. Finally, the
stress-energy tensor of matter is defined as,

Tµ⌫ =
�2p�g

�
p�gLm

�gµ⌫
. (4)

III. MASS EIGENSTATES AND
GRAVITATIONAL FORCE

Bimetric gravity has a well defined mass spectrum
around proportional backgrounds, where the metrics are
conformally related as f̄ = c2ḡ with the real constant c,
determined by [2],

↵2
�
c�0 + 3c2�1 + 3c3�2 + c4�3

�

= �1 + 3c�2 + 3c2�3 + c3�4 . (5)

We consider small fluctuations around that background,

gµ⌫ = ḡµ⌫ + �gµ⌫ , fµ⌫ = f̄µ⌫ + �fµ⌫ . (6)

Plugging this ansatz into the Einstein equations and
keeping only terms up to linear order in the fluctuations,
one finds that a massless spin-2 field, �Gµ⌫ , and a massive
spin-2 field, �Mµ⌫ propagate on the proportional back-
ground [1, 2]. The massive mode has a Fierz-Pauli mass,

m2
FP = m2 1 + ↵2c2

↵2c2
c(�1 + 2�2c+ �3c

2) . (7)

The original metric fluctuations are linear combinations
of both mass eigenstates,

�gµ⌫ / �Gµ⌫ � ↵2�Mµ⌫ , (8a)

�fµ⌫ / �Mµ⌫ + c2�Gµ⌫ , (8b)

where we omitted the overall normalization.
When ↵ ⌧ 1, the fluctuation of the physical metric

gµ⌫ is almost aligned with the massless excitation. Since
matter fields couple to the metric perturbations �gµ⌫ ,
we expect to recover GR for ↵ ⌧ 1 [15]. Clearly, in
this parameter region there is no conflict with current
observational data.

For instance, let us consider a spherically symmetric
background [16–20]. The contribution to the Newtonian
potential coming from the massless mode is a Coulomb-
like term, ⇠ r�1, proportional to the inverse distance be-
tween the source and the test particle, while the massive
mode contributes a Yukawa-term ⇠ e�mFPr/r. Hence,

from eq. (8a) it follows that the coupling 1
m2

g
�gµ⌫T

µ⌫ will

produce the following linearized gravitational potential,

V (r) = � 1

M2
Pl

✓
1

r
� ↵2e�mFPr

r

◆
, (9)

where the physical Planck mass isM2
Pl = m2

g(1+↵2c2) [2].
Whenever the first term in the gravitational potential
dominates over the second one, the solution behaves ap-
proximately like GR and does not require a Vainshtein
mechanism. We can thus identify two parameter régimes
in which GR is restored,

1.) ↵ ⌧ 1,

2.) mFP � `�1,

where ` is the typical length scale of the system (e.g.
` ' 1AU for the Solar System).

IV. EXAMPLE: SOLAR SYSTEM

In this section, we demonstrate the general results dis-
cussed in the previous section in an explicit example:
the Solar System. For concreteness, we derive numerical
values for the Sun as central source of the gravitational
potential. Not all Solar System tests are based on this
scenario, so our arguments here should be viewed as qual-
itative. A detailed quantitative analysis is left for future
work. Our findings are summarised in fig. 1 and fig. 2.

A. Yukawa suppression

At the scale of 1AU ' 1.5 ⇥ 1013 cm, deviations from
the inverse square law for the gravitational force are con-
strained to be . 10�9 [21]. We aim at providing the
most conservative constraints on the bimetric parame-
ters. Hence, we use this bound (which is the most strin-
gent one) on deviations for any distance from the Sun.
Comparing the two contributions in (9), this requires,

↵2e�mFPr . 10�9. (10)

Deviations due to the massive mode are arbitrarily small
in both the previously identified parameter limits. The
blue line in fig. 1 represents the bound eq. (10) for the
case ↵ = 1. Therefore, in the blue-shaded region, the
Yukawa-like term in the gravitational potential is always
smaller than all observational bounds. A value for ↵
smaller than unity makes the deviations even smaller.
Local gravity tests inside the Solar System provide

strong constraints on deviations from GR down to scales
of ⇠ 10µm [21]. As a very rough estimate, we use eq. (10)
to define a critical spin-2 mass (for ↵ ' 1),

mcrit ' 2.6 eV, (11)

TeV range TeV range

Enander, Mörtsell 1507.00912
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Galaxy rotation curves
Platscher et al. 1809.05318
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Gravitational lensing
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What is missing?

Combine gravity constraints with 
each other 

including the Vainshtein mechanism 
 and assuming DM is the massive graviton itself
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5
Conclusions & outlook
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1) Bigravity has cosmological solutions with self-acceleration (no CC) 

2) Due to the different laws of gravity compared to GR (Yukawa, 

Vainshtein), the by data required DM abundance is different 

3) The massive spin-2 field itself is a dark matter perfect dark matter 

candidate (production via freeze-in, stable on cosmological scales, 

coupling to SM Planck-suppressed, cold) 

4) The massive spin-2 field can form halos („geons“)
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- - - But there is still a lot to do phenomenologically - - - 

1) Cosmological perturbation theory: gradient instability 

2) Combine different observational constraints while using the 

massive spin-2 as dark matter particle itself 

3) Other production mechanisms?
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