Infrared Singularities and Soft Gluon Resummation with Massive Partons

Li Lin Yang

Institut für Physik, Johannes Gutenberg-Universität Mainz
In collaboration with Valentin Ahrens, Thomas Becher, Andrea Ferroglia,
Matthias Neubert and Ben D. Pecjak
April 7, 2010

Outline

Introduction

General structure of anomalous dimensions

Two-loop anomalous dimensions with massive partons

Application: top quark pair production

Conclusions

IR singularities in QCD

- In QCD we have:
- soft divergences when gluon momenta go to zero;
- collinear divergences when the momenta of two massless partons become parallel to each other.
- The soft divergences cancel between virtual and real contributions according to the KLN theorem.
- The remaining collinear divergences are absorbed into non-perturbative functions according to factorization theorems.
- The physical observables are free of IR singularities.

Why we care about IR singularities?

- Non-trivial property of non-abelian gauge theories.
- Abelian case trivial: all information contained at one-loop [Yennie, Frautschi, Suura (1961)].
- Essential ingredient for factorization and resummation.
- Important in proving the factorization theorems.
- Predict logarithmic enhancements at higher orders.
- Determine the evolution of various functions in the factorization formulas, which leads to the resummation of logarithmic enhancements.
- Consistency check on explicit loop calculations.

Soft gluon resummation

- Soft gluon resummation is based on the following kinds of factorization formula in certain kinematic limit:

$$
\begin{gathered}
\sigma \sim H\left(Q^{2}, \mu\right) S\left(\Lambda^{2}, \mu\right) J_{1}(Q \Lambda, \mu) \cdots J_{n}(Q \Lambda, \mu) \\
Q^{2} \gg Q \Lambda \gg \Lambda^{2} \longrightarrow \text { large logs! }
\end{gathered}
$$

- Solution: evaluate the hard, soft and jet functions at their natural scales and use evolution equations to connect them

$$
\sigma \sim U\left(\mu_{h}, \mu_{s}, \mu_{j}\right) H\left(Q^{2}, \mu_{h}\right) S\left(\Lambda^{2}, \mu_{s}\right) J_{1}\left(Q \Lambda, \mu_{j}\right) \cdots J_{n}\left(Q \Lambda, \mu_{j}\right)
$$

- The evolution factor U resums the large logs between different scales.

The effective theory comes into play

- Effective theories are useful to separate the different scales and treat them one by one. Example: Higgs production [Ahrens, Becher, Neubert, LLY (2008)]

$$
\begin{aligned}
& \begin{array}{|c|}
\hline \mathrm{SM} \\
n_{f}=6
\end{array} \stackrel{\mu_{t}}{\rightleftharpoons} \stackrel{\begin{array}{c}
\mathrm{SM} \\
n_{f}=5
\end{array}}{\stackrel{\mu_{h}}{\rightleftharpoons} \stackrel{\begin{array}{c}
\text { SCET } \\
h c, \overline{h c}, s
\end{array}}{\stackrel{\mu_{s}}{\rightleftharpoons}} \begin{array}{|}
\text { SCET } \\
c, \bar{c}
\end{array}} \\
& C_{t}\left(m_{t}^{2}, \mu_{t}^{2}\right) \quad H\left(m_{H}^{2}, \mu_{h}^{2}\right) \quad S\left(\hat{s}(1-z)^{2}, \mu_{s}^{2}\right)
\end{aligned}
$$

- The relevant effective field theory here is soft-collinear effective theory (SCET).
[Bauer, Fleming, Pirjol, Stewart (2000)]
[Bauer, Pirjol, Stewart (2001)]
[Beneke, Chapovsky, Diehl, Feldmann (2002)]

Demonstration of matching from QCD to SCET

- The IR divergences in QCD and SCET should agree by construction.
- All loop corrections to $\left\langle O^{\text {bare }}\right\rangle$ vanish in dimensional regularization for on-shell external partons.
- This implies: the UV poles in the bare operator matrix element are the negative of the IR poles in the QCD amplitude. SCET relates UV and IR!

IR renormalization

- The UV divergences in the matrix elements of the bare effective operators are removed by a multiplicative renormalization constant:

$$
\left\langle O^{\mathrm{ren}}\left(\epsilon_{\mathrm{IR}}, \mu\right)\right\rangle=Z\left(\epsilon_{\mathrm{UV}}, \mu\right)\left\langle O^{\text {bare }}\left(\epsilon_{\mathrm{UV}}, \epsilon_{\mathrm{IR}}\right)\right\rangle=\mathcal{O}\left(\epsilon_{\mathrm{UV}}^{0}\right) .
$$

- This means that the IR divergences in QCD amplitudes can be absorbed into the same renormalization factor

$$
Z^{-1}\left(\epsilon_{\mathbb{R}}, \mu\right) \mathcal{M}^{\mathrm{QCD}}\left(\epsilon_{\mathrm{IR}}\right)=\mathcal{O}\left(\epsilon_{\epsilon_{\mathbb{R}}}^{0}\right) .
$$

- Extending this to arbitrary n-parton processes, the amplitudes and the renormalization factors become vectors and matrices in color space (more details later)

$$
Z^{-1}(\epsilon,\{\underline{p}\},\{\underline{m}\}, \mu)|\mathcal{M}(\epsilon,\{\underline{p}\},\{\underline{m}\})\rangle=\mathcal{O}\left(\epsilon^{0}\right) .
$$

- This systematically generalizes a two-loop subtraction formula of [Catani (1998)] to all orders.

The anomalous dimension

- The renormalization factor satisfies a renormalization group equation

$$
\boldsymbol{Z}^{-1}(\epsilon,\{\underline{p}\},\{\underline{m}\}, \mu) \frac{d}{d \ln \mu} \boldsymbol{Z}(\epsilon,\{\underline{p}\},\{\underline{m}\}, \mu)=-\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu) .
$$

- The same anomalous dimension Γ governs the evolution of the hard Wilson coefficient (and the effective operator)!

$$
\frac{d}{d \ln \mu}|\mathcal{C}(\{\underline{p}\},\{\underline{m}\}, \mu)\rangle=\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)|\mathcal{C}(\{\underline{p}\},\{\underline{m}\}, \mu)\rangle .
$$

- Now the two things - the structure of IR singularities and soft gluon resummation - both rely on the determination of this anomalous dimension.

All-order conjecture for massless case

- The anomalous dimensions for amplitudes involving only massless partons are conjectured to be extremely simple:
[Becher, Neubert (2009)]
[Gardi, Magnea (2009)]

$$
\boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=\sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right),
$$

where $s_{i j}=2 \sigma_{i j} p_{i} \cdot p_{j}, \sigma_{i j}=+1$ if both momenta are incoming or outgoing, and -1 otherwise.

- Minimal structure: two parton correlations only.
- Known at two-loop by explicit calculations.
[Aybat, Dixon, Sterman (2006)]

All-order conjecture for massless case

- Supporting argument based on soft-collinear factorization, non-abelian exponentiation theorem and consistency with collinear limits.
- Implies Casimir scaling of the cusp anomalous dimensions:

$$
\frac{\Gamma_{\text {cusp }}^{q}}{C_{F}}=\frac{\Gamma_{\text {cusp }}^{g}}{C_{A}}=\gamma_{\text {cusp }},
$$

which is known to hold up to three-loop by explicit calculations.
[Moch, Vermaseren, Vogt (2004)]

When masses enter...

- For amplitudes involving massive partons, we need HQET in addition to SCET.
- Both the full and the effective theory know about the 4-velocities $v_{I}=p_{I} / m_{I}$ of the massive partons, which define the cusp angles

$$
\cosh \beta_{I J}=w_{I J}=-\sigma_{I J} v_{I} \cdot v_{J}
$$

- Much weaker constraints hold for the massive case:
- no soft-collinear factorization
- no constraint from (quasi-)collinear limits
- Non-abelian exponentiation theorem still apply.

Anomalous dimension to two loops

- General structure [Becher, Neubert (2009)]:

$$
\begin{aligned}
\boldsymbol{\Gamma}(\{\underline{p}\},\{\underline{m}\}, \mu)= & \sum_{(i, j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right) \\
& -\sum_{(I, J)} \frac{\boldsymbol{T}_{I} \cdot \boldsymbol{T}_{J}}{2} \gamma_{\mathrm{cusp}}\left(\beta_{I J}, \alpha_{s}\right)+\sum_{I} \gamma^{I}\left(\alpha_{s}\right) \\
& +\sum_{I, j} \boldsymbol{T}_{I} \cdot \boldsymbol{T}_{j} \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{m_{I} \mu}{-s_{I j}} \\
& +\sum_{(I, J, K)} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{K}^{c} F_{1}\left(\beta_{I J}, \beta_{J K}, \beta_{K I}\right) \\
& +\sum_{(I, J)} \sum_{k} i f^{a b c} \boldsymbol{T}_{I}^{a} \boldsymbol{T}_{J}^{b} \boldsymbol{T}_{k}^{c} f_{2}\left(\beta_{I J}, \ln \frac{-\sigma_{J k} v_{J} \cdot p_{k}}{-\sigma_{I k} v_{I} \cdot p_{k}}\right)
\end{aligned}
$$

- New functions F_{1} and f_{2} appear! F_{1} represents correlations among three massive partons, while f_{2} among two massive and one massless partons. (Correlations among one massive and two massless partons vanish.)

Calculation of F_{1}

- Relevant two-loop Feynman diagrams:

- "Planar" and counter-term diagrams simple: evaluate using standard techniques.

$$
\begin{aligned}
F_{1}^{(2) \text { planar }+\mathrm{CT}}= & \frac{4}{3} \sum_{I, J, K} \epsilon_{I J K} \beta_{K I} \operatorname{coth} \beta_{K I} \operatorname{coth} \beta_{I J} \\
& \times\left[\beta_{I J}^{2}+2 \beta_{I J} \ln \left(1-e^{-2 \beta_{I J}}\right)-\mathrm{Li}_{2}\left(e^{-2 \beta_{I J}}\right)+\frac{\pi^{2}}{6}\right]
\end{aligned}
$$

Calculation of the triple-gluon diagram

- Mitov, Sterman and Sung calculated it numerically in the non-physical region.
[Mitov, Sterman, Sung (2009)]
- We obtained the analytical result.
[Ferroglia, Neubert, Pecjak, LLY (2009)]
- Our method is based on the following Mellin-Barnes representation:

$$
\begin{aligned}
& I\left(w_{12}, w_{23}, w_{31}\right)=2\left(w_{23} w_{31}+w_{12}\right) \frac{1}{(2 \pi i)^{5}} \int_{-i \infty}^{+i \infty}\left[\prod_{i=1}^{5} d z_{i}\right]\left(2 w_{23}\right)^{2 z_{1}-1}\left(2 w_{31}\right)^{2 z_{2}-1}\left(2 w_{12}\right)^{2 z_{3}} \\
& \quad \times \frac{\Gamma\left(1-2 z_{1}\right) \Gamma\left(1-2 z_{2}\right)}{\Gamma\left(z_{1}+z_{2}+z_{3}+z_{4}+z_{5}\right)} \Gamma\left(-2 z_{3}\right) \Gamma\left(-z_{4}\right) \Gamma\left(z_{1}+z_{3}\right) \Gamma\left(z_{1}+z_{5}\right) \Gamma\left(z_{2}-z_{5}\right) \Gamma\left(z_{3}+z_{5}\right) \\
& \times \Gamma\left(z_{1}+z_{2}+z_{4}\right) \Gamma\left(z_{2}+z_{3}+z_{4}\right) \Gamma\left(z_{2}+z_{4}+z_{5}\right) \Gamma\left(1-z_{2}-z_{4}-z_{5}\right),
\end{aligned}
$$

from which the contribution to F_{1} can be obtained:

$$
F_{1}^{(2) \text { non-planar }}=\frac{4}{3} \sum_{I, J, K} \epsilon_{I J K} I\left(w_{I J}, w_{J K}, w_{K I}\right)
$$

Calculation of the triple-gluon diagram

- The above representation is not reducible with Barnes' Lemmas, and is also difficult to evaluate by residue method.
- The key observation here is that it is much more natural to work with cusp angles $\beta_{I J}$ instead of scalar products $w_{I J}$.
- Decomposing $w_{I J}$ as $w_{I J}=\cosh \beta_{I J}=\left(\alpha_{I J}+\alpha_{I J}^{-1}\right) / 2$ with $\alpha_{I J} \equiv e^{\beta_{I J}}$, and introducing three more Mellin-Barnes parameters, the resulting representation can be reduced using Barnes' Lemmas to a three-fold one:

$$
\begin{aligned}
I\left(w_{12}, w_{23}, w_{31}\right)= & 2\left(w_{23} w_{31}+w_{12}\right) \frac{1}{(2 \pi i)^{3}} \int_{-i \infty}^{+i \infty} d z_{1} d z_{2} d z_{3} \alpha_{12}^{-2 z_{3}} \alpha_{23}^{-1-2 z_{1}} \alpha_{31}^{-1-2 z 2} \\
& \times \Gamma\left(-z_{1}-z_{3}\right) \Gamma\left(1+z_{1}-z_{3}\right) \Gamma\left(-z_{1}+z_{3}\right) \Gamma\left(1+z_{1}+z_{3}\right) \\
& \times \Gamma^{2}\left(-z_{2}-z_{3}\right) \Gamma^{2}\left(1+z_{2}-z_{3}\right) \Gamma^{2}\left(-z_{2}+z_{3}\right) \Gamma^{2}\left(1+z_{2}+z_{3}\right) .
\end{aligned}
$$

Final result for F_{1}

- The remaining integrals can be performed by closing the contours and summing up the residues. The result turns out to be amazingly simple after anti-symmetrized sum:

$$
F_{1}^{(2) \text { non-planar }}=-\frac{4}{3} \sum_{I, J, K} \epsilon_{I J K} \beta_{I J}^{2} \beta_{K I} \operatorname{coth} \beta_{K I} .
$$

- Together with the planar and counter-term diagrams, the final result for F_{1} is

$$
F_{1}^{(2)}\left(\beta_{12}, \beta_{23}, \beta_{31}\right)=\frac{4}{3} \sum_{I, J, K} \epsilon_{I J K} r\left(\beta_{K I}\right) g\left(\beta_{I J}\right),
$$

where

$$
\begin{aligned}
r(\beta) & =\beta \operatorname{coth} \beta \\
g(\beta) & =\operatorname{coth} \beta\left[\beta^{2}+2 \beta \ln \left(1-e^{-2 \beta}\right)-\operatorname{Li}_{2}\left(e^{-2 \beta}\right)+\frac{\pi^{2}}{6}\right]-\beta^{2}-\frac{\pi^{2}}{6}
\end{aligned}
$$

Derivation of f_{2}

- The derivation of f_{2} is straightforward by observing that f_{2} is the limit of F_{1} when one of the partons becomes massless:

$$
\begin{aligned}
f_{2}^{(2)}\left(\beta_{12}, \ln \frac{-\sigma_{23} v_{2} \cdot p_{3}}{-\sigma_{31} v_{1} \cdot p_{3}}\right) & =3 \lim _{m_{3} \rightarrow 0} F_{1}^{(2)}\left(\beta_{12}, \beta_{23}, \beta_{31}\right) \\
& =-4 g\left(\beta_{12}\right) \ln \frac{-\sigma_{23} v_{2} \cdot p_{3}}{-\sigma_{13} v_{1} \cdot p_{3}}
\end{aligned}
$$

Properties of F_{1} and f_{2}

- F_{1} and f_{2} do not vanish for $v_{1} \rightarrow v_{2}$! In contrast to naive expectations based on anti-symmetry.

$$
\begin{aligned}
\lim _{\beta_{12} \rightarrow i \pi} F_{1}^{(2)}\left(\beta_{12}, \beta_{23}, \beta_{31}\right)=-\sigma_{13} \frac{4}{3}\{ & {\left.\left[\pi^{2}+2 i \pi \ln \left(2\left|\vec{v}_{12}\right|\right)\right] r^{\prime}\left(\beta_{31}\right)-i \pi g^{\prime}\left(\beta_{31}\right)\right\} } \\
& \times\left(\frac{\vec{v}_{12}}{\left|\vec{v}_{12}\right|} \cdot \frac{\vec{v}_{3}}{\left|\vec{v}_{3}\right|}\right), \\
\lim _{\beta_{12} \rightarrow i \pi} f_{2}^{(2)}\left(\beta_{12}, \ln \frac{-\sigma_{23} v_{2} \cdot p_{3}}{-\sigma_{13} v_{1} \cdot p_{3}}\right)=4\left[\pi^{2}+\right. & \left.2 i \pi \ln \left(2\left|\vec{v}_{12}\right|\right)\right] \frac{\vec{v}_{12}}{\left|\vec{v}_{12}\right|} \cdot \frac{\vec{p}_{3}}{\left|\vec{p}_{3}\right|} .
\end{aligned}
$$

- In the massless limit $m_{I} \rightarrow 0$ or $\left|w_{I J}\right| \rightarrow \infty, F_{1}$ and f_{2} vanish like $\left(m_{I} m_{J} / s_{I J}\right)^{2}$, in accordance with a mass factorization theorem. [Mitov, Moch (2007)], [Becher, Melnikov (2007)]

First application: top quark pair production

- Predict all IR poles in two-loop amplitudes in analytic form.
- Results for $q \bar{q}$ channel verified with numeric results of [Czakon (2008)] and analytic results of
[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)], [Bonciani, Ferroglia, Gehrmann, Studerus (2009)].
- Results for $g g$ channel are new, and were later confirmed by [Czakon: RADCOR 2009].
- Predict logarithmic terms at next-to-next-to-leading order.
- Soft gluon resummation at next-to-next-to-leading-log.

First application: top quark pair production

- Predict all IR poles in two-loop amplitudes in analytic form.
- Results for $q \bar{q}$ channel verified with numeric results of [Czakon (2008)] and analytic results of
[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)], [Bonciani, Ferroglia, Gehrmann, Studerus (2009)].
- Results for $g g$ channel are new, and were later confirmed by [Czakon: RADCOR 2009].
- Predict logarithmic terms at next-to-next-to-leading order.
- Soft gluon resummation at next-to-next-to-leading-log.

See the talk by Ben Pecjak

IR singularities to two-loops

- The IR singularities in the amplitudes are determined to two-loops via

$$
\begin{aligned}
\left|\mathcal{M}^{(1), \text { sing }}\right\rangle & =Z^{(1)}\left|\mathcal{M}^{(0)}\right\rangle \\
\left|\mathcal{M}^{(2), \text { sing }}\right\rangle & =\left[\boldsymbol{Z}^{(2)}-\left(\boldsymbol{Z}^{(1)}\right)^{2}\right]\left|\mathcal{M}^{(0)}\right\rangle+\left(\boldsymbol{Z}^{(1)}\left|\mathcal{M}^{(1)}\right\rangle\right)_{\text {poles }}
\end{aligned}
$$

- The renormalization factor is given by

$$
\begin{aligned}
\boldsymbol{Z}= & 1+\frac{\alpha_{s}^{\mathrm{QCD}}}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{0}}{2 \epsilon}\right) \\
& +\left(\frac{\alpha_{s}^{\mathrm{QCD}}}{4 \pi}\right)^{2}\left\{\frac{\left(\Gamma_{0}^{\prime}\right)^{2}}{32 \epsilon^{4}}+\frac{\Gamma_{0}^{\prime}}{8 \epsilon^{3}}\left(\boldsymbol{\Gamma}_{0}-\frac{3}{2} \beta_{0}\right)+\frac{\boldsymbol{\Gamma}_{0}}{8 \epsilon^{2}}\left(\boldsymbol{\Gamma}_{0}-2 \beta_{0}\right)+\frac{\Gamma_{1}^{\prime}}{16 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{1}}{4 \epsilon}\right. \\
& \left.-\frac{2 T_{F}}{3}\left[\Gamma_{0}^{\prime}\left(\frac{1}{2 \epsilon^{2}} \ln \frac{\mu^{2}}{m_{t}^{2}}+\frac{1}{4 \epsilon}\left[\ln ^{2} \frac{\mu^{2}}{m_{t}^{2}}+\frac{\pi^{2}}{6}\right]\right)+\frac{\boldsymbol{\Gamma}_{0}}{\epsilon} \ln \frac{\mu^{2}}{m_{t}^{2}}\right]\right\}+\mathcal{O}\left(\alpha_{s}^{3}\right) .
\end{aligned}
$$

- The anomalous dimension $\boldsymbol{\Gamma}$ is expressed in terms of color generators \boldsymbol{T}_{i} and the functions $\gamma_{\text {cusp }}, \gamma^{q}, \gamma^{g}, \gamma^{Q}$ and f_{2}.

IR singularities to two-loops

- The IR singularities in the amplitudes are determined to two-loops via

$$
\begin{aligned}
\left|\mathcal{M}^{(1), \text { sing }}\right\rangle & =Z^{(1)}\left|\mathcal{M}^{(0)}\right\rangle \longrightarrow \text { Still need to explain } \\
\left|\mathcal{M}^{(2), \text { sing }}\right\rangle & =\left[\boldsymbol{Z}^{(2)}-\left(\boldsymbol{Z}^{(1)}\right)^{2}\right]\left|\mathcal{M}^{(0)}\right\rangle+\left(\boldsymbol{Z}^{(1)}\left|\mathcal{M}^{(1)}\right\rangle\right)_{\text {poles }}
\end{aligned}
$$

- The renormalization factor is given by

$$
\begin{aligned}
Z= & 1+\frac{\alpha_{s}^{\mathrm{OCD}}}{4 \pi}\left(\frac{\Gamma_{0}^{\prime}}{4 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{0}}{2 \epsilon}\right) \\
+ & \left(\frac{\alpha_{s}^{\mathrm{QCD}}}{4 \pi}\right)^{2}\left\{\frac{\left(\Gamma_{0}^{\prime}\right)^{2}}{32 \epsilon^{4}}+\frac{\Gamma_{0}^{\prime}}{8 \epsilon^{3}}\left(\boldsymbol{\Gamma}_{0}-\frac{3}{2} \beta_{0}\right)+\frac{\boldsymbol{\Gamma}_{0}}{8 \epsilon^{2}}\left(\boldsymbol{\Gamma}_{0}-2 \beta_{0}\right)+\frac{\Gamma_{1}^{\prime}}{16 \epsilon^{2}}+\frac{\boldsymbol{\Gamma}_{1}}{4 \epsilon}\right. \\
& \left.-\frac{2 T_{F}}{3}\left[\Gamma_{0}^{\prime}\left(\frac{1}{2 \epsilon^{2}} \ln \frac{\mu^{2}}{m_{t}^{2}}+\frac{1}{4 \epsilon}\left[\ln ^{2} \frac{\mu^{2}}{m_{t}^{2}}+\frac{\pi^{2}}{6}\right]\right)+\frac{\boldsymbol{\Gamma}_{0}}{\epsilon} \ln \frac{\mu^{2}}{m_{t}^{2}}\right]\right\}+\mathcal{O}\left(\alpha_{s}^{3}\right) .
\end{aligned}
$$

- The anomalous dimension $\boldsymbol{\Gamma}$ is expressed in terms of color generators \boldsymbol{T}_{i} and the functions $\gamma_{\text {cusp }}, \gamma^{q}, \gamma^{g}, \gamma^{Q}$ and f_{2}.

Color space formalism

[Catani, Seymour (1996)]

- Consider the on-shell amplitude ($\alpha \beta=q \bar{q}, g g$)

$$
\mathcal{M}_{\{a\}}=\left\langle t^{a_{3}}\left(p_{3}\right) \bar{t}^{a_{4}}\left(p_{4}\right)\right| \mathcal{H}\left|\alpha^{a_{1}}\left(p_{1}\right) \beta^{a_{2}}\left(p_{2}\right)\right\rangle .
$$

- Introduce an orthonormal basis of vectors $\left\{\left|a_{1}, a_{2}, a_{3}, a_{4}\right\rangle\right\}$ and a vector $|M\rangle$, so that

$$
\mathcal{M}_{\{a\}}=\left\langle a_{1}, a_{2}, a_{3}, a_{4} \mid \mathcal{M}\right\rangle
$$

- Color generators \boldsymbol{T}_{i} are defined by

$$
\boldsymbol{T}_{i}^{c}\left|\ldots, a_{i}, \ldots\right\rangle=\left(\boldsymbol{T}_{i}^{c}\right)_{b_{i} a_{i}}\left|\ldots, b_{i}, \ldots\right\rangle,
$$

where $\left(\boldsymbol{T}_{i}^{c}\right)_{b a}$ is

- $t_{b a}^{c}$ for a final-state quark or an initial-state anti-quark;
- $-t_{a b}^{c}$ for a final-state anti-quark or an initial-state quark;
- $i f^{a b c}$ for a gluon.

Color space formalism

- Introduce the orthogonal basis

$$
\begin{gathered}
\left(c_{1}^{q \bar{q}}\right)_{\{a\}}=\delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}}, \quad\left(c_{2}^{q \bar{q}}\right)_{\{a\}}=t_{a_{2} a_{1}}^{c} t_{a_{3} a_{4}}^{c}, \\
\left(c_{1}^{g g}\right)_{\{a\}}=\delta^{a_{1} a_{2}} \delta_{a_{3} a_{4}}, \quad\left(c_{2}^{g g}\right)_{\{a\}}=i f^{a_{1} a_{2} c} t_{a_{3} a_{4}}^{c}, \quad\left(c_{3}^{g g}\right)_{\{a\}}=d^{a_{1} a_{2} c} t_{a_{3} a_{4}}^{c},
\end{gathered}
$$

and the vectors

$$
\left|c_{I}\right\rangle \equiv \sum_{\{a\}}\left(c_{I}\right)_{\{a\}}|\{a\}\rangle .
$$

- Define the "vector components" of $|\mathcal{M}\rangle$ and the "matrix elements" of $\boldsymbol{\Gamma}$ as

$$
\mathcal{M}_{I}=\frac{1}{\left\langle c_{I} \mid c_{I}\right\rangle}\left\langle c_{I} \mid \mathcal{M}\right\rangle, \quad \Gamma_{I J}=\frac{1}{\left\langle c_{I} \mid c_{I}\right\rangle}\left\langle c_{I}\right| \boldsymbol{\Gamma}\left|c_{J}\right\rangle,
$$

so that

$$
(\boldsymbol{\Gamma}|\mathcal{M}\rangle)_{I}=\Gamma_{I J} \mathcal{M}_{J} .
$$

Two-loop anomalous dimension matrices

- Now we are ready to present

$$
\begin{aligned}
\boldsymbol{\Gamma}_{q \bar{q}}= & {\left[C_{F} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{-s}{\mu^{2}}+C_{F} \gamma_{\text {cusp }}\left(\beta_{34}, \alpha_{s}\right)+2 \gamma^{q}\left(\alpha_{s}\right)+2 \gamma^{Q}\left(\alpha_{s}\right)\right] \mathbf{1} } \\
& +\frac{N}{2}\left[\gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\left(-s_{13}\right)\left(-s_{24}\right)}{(-s) m_{t}^{2}}-\gamma_{\mathrm{cusp}}\left(\beta_{34}, \alpha_{s}\right)\right]\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right) \\
& +\gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \ln \frac{\left(-s_{13}\right)\left(-s_{24}\right)}{\left(-s_{14}\right)\left(-s_{23}\right)}\left[\left(\begin{array}{cc}
0 & \frac{C_{F}}{2 N} \\
1 & -\frac{1}{N}
\end{array}\right)+\frac{\alpha_{s}}{4 \pi} g\left(\beta_{34}\right)\left(\begin{array}{cc}
0 & \frac{C_{F}}{2} \\
-N & 0
\end{array}\right)\right] .
\end{aligned}
$$

- Similar for $g g$, but a 3×3 matrix.

Conclusions

- Infrared singularities play an important role in QCD and can be determined systematically from anomalous dimensions.
- We compute the anomalous dimensions to two-loop order for scattering amplitudes involving arbitrary numbers of massless and massive partons.
- The infrared structure of any two-loop amplitude in non-abelian gauge theories is therefore well understood.
- Our results also enable the soft gluon resummation for such processes at next-to-next-to-leading-log level.
- First application: top quark pair production.

