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IR singularities in QCD

I In QCD we have:
I soft divergences when gluon momenta go to zero;
I collinear divergences when the momenta of two massless partons

become parallel to each other.

I The soft divergences cancel between virtual and real
contributions according to the KLN theorem.

I The remaining collinear divergences are absorbed into
non-perturbative functions according to factorization theorems.

I The physical observables are free of IR singularities.



Why we care about IR singularities?

I Non-trivial property of non-abelian gauge theories.
I Abelian case trivial: all information contained at one-loop

[Yennie, Frautschi, Suura (1961)].
I Essential ingredient for factorization and resummation.

I Important in proving the factorization theorems.
I Predict logarithmic enhancements at higher orders.
I Determine the evolution of various functions in the factorization

formulas, which leads to the resummation of logarithmic
enhancements.

I Consistency check on explicit loop calculations.



Soft gluon resummation

I Soft gluon resummation is based on the following kinds of
factorization formula in certain kinematic limit:

σ ∼ H(Q2, µ) S(Λ2, µ) J1(QΛ, µ) · · · Jn(QΛ, µ)

Q2 � QΛ� Λ2 −→ large logs!

I Solution: evaluate the hard, soft and jet functions at their natural
scales and use evolution equations to connect them

σ ∼ U(µh, µs, µj) H(Q2, µh) S(Λ2, µs) J1(QΛ, µj) · · · Jn(QΛ, µj)

I The evolution factor U resums the large logs between different
scales.



The effective theory comes into play

I Effective theories are useful to separate the different scales and
treat them one by one. Example: Higgs production
[Ahrens, Becher, Neubert, LLY (2008)]

I The relevant effective field theory here is soft-collinear effective
theory (SCET).
[Bauer, Fleming, Pirjol, Stewart (2000)]

[Bauer, Pirjol, Stewart (2001)]

[Beneke, Chapovsky, Diehl, Feldmann (2002)]



Demonstration of matching from QCD to SCET

× CS

collinear gluon

MQCD(εIR) = CS(µ) 〈Oren(εIR, µ)〉 = CS(µ) Z(εUV, µ) 〈Obare(εUV, εIR)〉

I The IR divergences in QCD and SCET should agree by
construction.

I All loop corrections to 〈Obare〉 vanish in dimensional
regularization for on-shell external partons.

I This implies: the UV poles in the bare operator matrix element
are the negative of the IR poles in the QCD amplitude.
SCET relates UV and IR!



IR renormalization

I The UV divergences in the matrix elements of the bare effective
operators are removed by a multiplicative renormalization
constant:

〈Oren(εIR, µ)〉 = Z(εUV, µ) 〈Obare(εUV, εIR)〉 = O(ε0
UV) .

I This means that the IR divergences in QCD amplitudes can be
absorbed into the same renormalization factor

Z−1(εIR, µ)MQCD(εIR) = O(ε0
IR) .

I Extending this to arbitrary n-parton processes, the amplitudes
and the renormalization factors become vectors and matrices in
color space (more details later)

Z−1(ε, {p}, {m}, µ) |M(ε, {p}, {m})〉 = O(ε0) .

I This systematically generalizes a two-loop subtraction formula of
[Catani (1998)] to all orders.



The anomalous dimension

I The renormalization factor satisfies a renormalization group
equation

Z−1(ε, {p}, {m}, µ)
d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) .

I The same anomalous dimension Γ governs the evolution of the
hard Wilson coefficient (and the effective operator)!

d
d lnµ

|C({p}, {m}, µ)〉 = Γ({p}, {m}, µ) |C({p}, {m}, µ)〉 .

I Now the two things — the structure of IR singularities and soft
gluon resummation — both rely on the determination of this
anomalous dimension.



All-order conjecture for massless case

I The anomalous dimensions for amplitudes involving only
massless partons are conjectured to be extremely simple:
[Becher, Neubert (2009)]
[Gardi, Magnea (2009)]

Γ({p}, µ) =
X
(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
X

i

γi(αs) ,

where sij = 2σij pi · pj, σij = +1 if both momenta are incoming or
outgoing, and −1 otherwise.

I Minimal structure: two parton correlations only.
I Known at two-loop by explicit calculations.

[Aybat, Dixon, Sterman (2006)]



All-order conjecture for massless case

I Supporting argument based on soft-collinear factorization,
non-abelian exponentiation theorem and consistency with
collinear limits.

I Implies Casimir scaling of the cusp anomalous dimensions:

Γq
cusp

CF
=

Γg
cusp

CA
= γcusp ,

which is known to hold up to three-loop by explicit calculations.
[Moch, Vermaseren, Vogt (2004)]



When masses enter...

I For amplitudes involving massive partons, we need HQET in
addition to SCET.

I Both the full and the effective theory know about the 4-velocities
vI = pI/mI of the massive partons, which define the cusp angles

coshβIJ = wIJ = −σIJ vI · vJ .

I Much weaker constraints hold for the massive case:
I no soft-collinear factorization
I no constraint from (quasi-)collinear limits

I Non-abelian exponentiation theorem still apply.



Anomalous dimension to two loops

I General structure [Becher, Neubert (2009)]:

Γ({p}, {m}, µ) =
X
(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
X

i

γi(αs)

−
X
(I,J)

TI · TJ

2
γcusp(βIJ, αs) +

X
I

γI(αs)

+
X

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
X

(I,J,K)

i f abc Ta
I Tb

J Tc
K F1(βIJ, βJK, βKI)

+
X
(I,J)

X
k

i f abc Ta
I Tb

J Tc
k f2
“
βIJ, ln

−σJk vJ · pk

−σIk vI · pk

”
.

I New functions F1 and f2 appear! F1 represents correlations
among three massive partons, while f2 among two massive and
one massless partons. (Correlations among one massive and two
massless partons vanish.)



Calculation of F1

I Relevant two-loop Feynman diagrams:
v1

v2 v3

I “Planar” and counter-term diagrams simple: evaluate using
standard techniques.

F(2) planar+CT
1 =

4
3

X
I,J,K

εIJK βKI cothβKI cothβIJ

×
»
β2

IJ + 2βIJ ln(1− e−2βIJ )− Li2(e−2βIJ ) +
π2

6

–
,



Calculation of the triple-gluon diagram

I Mitov, Sterman and Sung calculated it numerically in the
non-physical region.
[Mitov, Sterman, Sung (2009)]

I We obtained the analytical result.
[Ferroglia, Neubert, Pecjak, LLY (2009)]

I Our method is based on the following Mellin-Barnes
representation:

I(w12,w23,w31) = 2(w23 w31 + w12)
1

(2πi)5

+i∞Z
−i∞

" 5Y
i=1

dzi

#
(2w23)

2z1−1
(2w31)

2z2−1
(2w12)

2z3

×
Γ(1− 2z1) Γ(1− 2z2)

Γ(z1 + z2 + z3 + z4 + z5)
Γ(−2z3) Γ(−z4) Γ(z1 + z3) Γ(z1 + z5) Γ(z2 − z5) Γ(z3 + z5)

× Γ(z1 + z2 + z4) Γ(z2 + z3 + z4) Γ(z2 + z4 + z5) Γ(1− z2 − z4 − z5) ,

from which the contribution to F1 can be obtained:

F(2) non-planar
1 =

4
3

X
I,J,K

εIJK I(wIJ,wJK,wKI) .



Calculation of the triple-gluon diagram

I The above representation is not reducible with Barnes’ Lemmas,
and is also difficult to evaluate by residue method.

I The key observation here is that it is much more natural to work
with cusp angles βIJ instead of scalar products wIJ.

I Decomposing wIJ as wIJ = coshβIJ = (αIJ + α−1
IJ )/2 with

αIJ ≡ eβIJ , and introducing three more Mellin-Barnes parameters,
the resulting representation can be reduced using Barnes’
Lemmas to a three-fold one:

I(w12,w23,w31) = 2(w23 w31 + w12)
1

(2πi)3

+i∞Z
−i∞

dz1 dz2 dz3 α
−2z3
12 α

−1−2z1
23 α−1−2z2

31

× Γ(−z1 − z3) Γ(1 + z1 − z3) Γ(−z1 + z3) Γ(1 + z1 + z3)

× Γ2(−z2 − z3) Γ2(1 + z2 − z3) Γ2(−z2 + z3) Γ2(1 + z2 + z3) .



Final result for F1

I The remaining integrals can be performed by closing the contours
and summing up the residues. The result turns out to be
amazingly simple after anti-symmetrized sum:

F(2) non-planar
1 = −4

3

X
I,J,K

εIJK β
2
IJ βKI cothβKI .

I Together with the planar and counter-term diagrams, the final
result for F1 is

F(2)
1 (β12, β23, β31) =

4
3

X
I,J,K

εIJK r(βKI) g(βIJ) ,

where

r(β) = β cothβ

g(β) = cothβ
»
β2 + 2β ln(1− e−2β)− Li2(e−2β) +

π2

6

–
− β2 − π2

6
.



Derivation of f2

I The derivation of f2 is straightforward by observing that f2 is the
limit of F1 when one of the partons becomes massless:

f (2)
2

“
β12, ln

−σ23 v2 · p3

−σ31 v1 · p3

”
= 3 lim

m3→0
F(2)

1 (β12, β23, β31)

= −4 g(β12) ln
−σ23 v2 · p3

−σ13 v1 · p3
,



Properties of F1 and f2

I F1 and f2 do not vanish for v1 → v2! In contrast to naive
expectations based on anti-symmetry.

lim
β12→iπ

F(2)
1 (β12, β23, β31) = −σ13

4
3

nh
π2 + 2iπ ln(2|~v12|)

i
r′(β31)− iπ g′(β31)

o
×
„
~v12

|~v12|
·
~v3

|~v3|

«
,

lim
β12→iπ

f (2)
2

“
β12, ln

−σ23 v2 · p3

−σ13 v1 · p3

”
= 4

h
π2 + 2iπ ln(2|~v12|)

i ~v12

|~v12|
·
~p3

|~p3|
.

I In the massless limit mI → 0 or |wIJ| → ∞, F1 and f2 vanish like
(mImJ/sIJ)2, in accordance with a mass factorization theorem.
[Mitov, Moch (2007)], [Becher, Melnikov (2007)]



First application: top quark pair production

I Predict all IR poles in two-loop amplitudes in analytic form.
I Results for qq̄ channel verified with numeric results of

[Czakon (2008)]
and analytic results of
[Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)],
[Bonciani, Ferroglia, Gehrmann, Studerus (2009)].

I Results for gg channel are new, and were later confirmed by
[Czakon: RADCOR 2009].

I Predict logarithmic terms at next-to-next-to-leading order.

I Soft gluon resummation at next-to-next-to-leading-log.
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See the talk by Ben Pecjak



IR singularities to two-loops

I The IR singularities in the amplitudes are determined to
two-loops via˛̨̨

M(1), sing
E

= Z(1)
˛̨̨
M(0)

E
,˛̨̨

M(2), sing
E

=

»
Z(2) −

“
Z(1)

”2
– ˛̨̨
M(0)

E
+
“

Z(1)
˛̨̨
M(1)

E”
poles

,

I The renormalization factor is given by

Z = 1 +
αQCD

s

4π

„
Γ′0
4ε2 +

Γ0

2ε

«
+

„
αQCD

s

4π

«2
(

(Γ′0)2

32ε4 +
Γ′0
8ε3

„
Γ0 −

3
2
β0

«
+

Γ0

8ε2 (Γ0 − 2β0) +
Γ′1

16ε2 +
Γ1

4ε

− 2TF

3

"
Γ′0

„
1

2ε2 ln
µ2

m2
t

+
1
4ε

»
ln2 µ

2

m2
t

+
π2

6

–«
+

Γ0

ε
ln
µ2

m2
t

#)
+O(α3

s ) .

I The anomalous dimension Γ is expressed in terms of color
generators Ti and the functions γcusp, γq, γg, γQ and f2.
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– ˛̨̨
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˛̨̨
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αQCD

s

4π

„
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4ε2 +

Γ0

2ε

«
+

„
αQCD

s

4π

«2
(

(Γ′0)2

32ε4 +
Γ′0
8ε3

„
Γ0 −

3
2
β0

«
+

Γ0

8ε2 (Γ0 − 2β0) +
Γ′1

16ε2 +
Γ1

4ε

− 2TF

3

"
Γ′0

„
1
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µ2

m2
t

+
1
4ε

»
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2

m2
t

+
π2

6

–«
+

Γ0

ε
ln
µ2

m2
t

#)
+O(α3

s ) .

I The anomalous dimension Γ is expressed in terms of color
generators Ti and the functions γcusp, γq, γg, γQ and f2.

Still need to explain



Color space formalism

[Catani, Seymour (1996)]

I Consider the on-shell amplitude (αβ = qq̄, gg)

M{a} =
˙
ta3 (p3) t̄a4 (p4)

˛̨
H
˛̨
αa1 (p1)βa2 (p2)

¸
.

I Introduce an orthonormal basis of vectors {|a1, a2, a3, a4〉} and a
vector |M〉, so that

M{a} = 〈a1, a2, a3, a4 |M〉 .

I Color generators Ti are defined by

Tc
i |. . . , ai, . . .〉 = (Tc

i )biai |. . . , bi, . . .〉 ,

where (Tc
i )ba is

I tc
ba for a final-state quark or an initial-state anti-quark;

I −tc
ab for a final-state anti-quark or an initial-state quark;

I if abc for a gluon.



Color space formalism

I Introduce the orthogonal basis`
cqq̄

1

´
{a} = δa1a2δa3a4 ,

`
cqq̄

2

´
{a} = tc

a2a1 tc
a3a4 ,`

cgg
1

´
{a} = δa1a2δa3a4 ,

`
cgg

2

´
{a} = if a1a2c tc

a3a4 ,
`
cgg

3

´
{a} = da1a2c tc

a3a4 ,

and the vectors

|cI〉 ≡
X
{a}

`
cI
´
{a} |{a}〉 .

I Define the “vector components” of |M〉 and the “matrix
elements” of Γ as

MI =
1

〈cI | cI〉
〈cI |M〉 , ΓIJ =

1
〈cI | cI〉

〈cI |Γ | cJ〉 ,

so that `
Γ |M〉

´
I
= ΓIJMJ .



Two-loop anomalous dimension matrices

I Now we are ready to present

Γqq̄ =

»
CF γcusp(αs) ln

−s
µ2 + CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

–
1

+
N
2

»
γcusp(αs) ln

(−s13)(−s24)

(−s) m2
t
− γcusp(β34, αs)

–„
0 0
0 1

«
+ γcusp(αs) ln

(−s13)(−s24)

(−s14)(−s23)

»„
0 CF

2N
1 − 1

N

«
+
αs

4π
g(β34)

„
0 CF

2
−N 0

«–
.

I Similar for gg, but a 3× 3 matrix.



Conclusions

I Infrared singularities play an important role in QCD and can be
determined systematically from anomalous dimensions.

I We compute the anomalous dimensions to two-loop order for
scattering amplitudes involving arbitrary numbers of massless
and massive partons.

I The infrared structure of any two-loop amplitude in non-abelian
gauge theories is therefore well understood.

I Our results also enable the soft gluon resummation for such
processes at next-to-next-to-leading-log level.

I First application: top quark pair production.


	Introduction
	General structure of anomalous dimensions
	Two-loop anomalous dimensions with massive partons
	Application: top quark pair production
	Conclusions

