Infrared Singularities and Soft Gluon Resummation with Massive Partons

Li Lin Yang

Institut für Physik, Johannes Gutenberg-Universität Mainz In collaboration with Valentin Ahrens, Thomas Becher, Andrea Ferroglia, Matthias Neubert and Ben D. Pecjak

April 7, 2010

Outline

Introduction

General structure of anomalous dimensions

Two-loop anomalous dimensions with massive partons

Application: top quark pair production

Conclusions

IR singularities in QCD

- In QCD we have:
 - soft divergences when gluon momenta go to zero;
 - collinear divergences when the momenta of two massless partons become parallel to each other.
- The soft divergences cancel between virtual and real contributions according to the KLN theorem.
- The remaining collinear divergences are absorbed into non-perturbative functions according to factorization theorems.
- ► The physical observables are free of IR singularities.

Why we care about IR singularities?

- ▶ Non-trivial property of non-abelian gauge theories.
 - Abelian case trivial: all information contained at one-loop [Yennie, Frautschi, Suura (1961)].
- ► Essential ingredient for factorization and resummation.
 - Important in proving the factorization theorems.
 - Predict logarithmic enhancements at higher orders.
 - Determine the evolution of various functions in the factorization formulas, which leads to the resummation of logarithmic enhancements.
- Consistency check on explicit loop calculations.

Soft gluon resummation

Soft gluon resummation is based on the following kinds of factorization formula in certain kinematic limit:

$$\sigma \sim H(Q^2, \mu) S(\Lambda^2, \mu) J_1(Q\Lambda, \mu) \cdots J_n(Q\Lambda, \mu)$$
$$Q^2 \gg Q\Lambda \gg \Lambda^2 \longrightarrow \text{large logs!}$$

Solution: evaluate the hard, soft and jet functions at their natural scales and use evolution equations to connect them

 $\sigma \sim U(\mu_h, \mu_s, \mu_j) H(Q^2, \mu_h) S(\Lambda^2, \mu_s) J_1(Q\Lambda, \mu_j) \cdots J_n(Q\Lambda, \mu_j)$

► The evolution factor *U* resums the large logs between different scales.

The effective theory comes into play

Effective theories are useful to separate the different scales and treat them one by one. Example: Higgs production [Ahrens, Becher, Neubert, LLY (2008)]

$$\begin{array}{c} \mathsf{SM} \\ n_f = 6 \end{array} \xrightarrow{\mu_t} & \mathsf{SM} \\ n_f = 5 \end{array} \xrightarrow{\mu_h} & \mathsf{SCET} \\ h_c, \overline{hc}, s \end{array} \xrightarrow{\mu_s} & \mathsf{SCET} \\ c, \overline{c} \end{array} \\ C_t(m_t^2, \mu_t^2) \qquad H(m_H^2, \mu_h^2) \qquad S(\hat{s}(1-z)^2, \mu_s^2) \end{array}$$

The relevant effective field theory here is soft-collinear effective theory (SCET).
 [Bauer, Fleming, Pirjol, Stewart (2000)]
 [Bauer, Pirjol, Stewart (2001)]
 [Beneke, Chapovsky, Diehl, Feldmann (2002)]

Demonstration of matching from QCD to SCET

- The IR divergences in QCD and SCET should agree by construction.
- ► All loop corrections to (O^{bare}) vanish in dimensional regularization for on-shell external partons.
- This implies: the UV poles in the bare operator matrix element are the negative of the IR poles in the QCD amplitude. SCET relates UV and IR!

IR renormalization

The UV divergences in the matrix elements of the bare effective operators are removed by a multiplicative renormalization constant:

$$\langle O^{\text{ren}}(\epsilon_{\text{IR}},\mu)\rangle = Z(\epsilon_{\text{UV}},\mu) \langle O^{\text{bare}}(\epsilon_{\text{UV}},\epsilon_{\text{IR}})\rangle = \mathcal{O}(\epsilon_{\text{UV}}^{0}).$$

This means that the IR divergences in QCD amplitudes can be absorbed into the same renormalization factor

$$Z^{-1}(\epsilon_{\rm IR},\mu)\,\mathcal{M}^{\rm QCD}(\epsilon_{\rm IR})=\mathcal{O}(\epsilon_{\rm IR}^0)\,.$$

Extending this to arbitrary *n*-parton processes, the amplitudes and the renormalization factors become vectors and matrices in color space (more details later)

$$\mathbf{Z}^{-1}(\epsilon, \{\underline{p}\}, \{\underline{m}\}, \mu) | \mathcal{M}(\epsilon, \{\underline{p}\}, \{\underline{m}\}) \rangle = \mathcal{O}(\epsilon^{0}).$$

This systematically generalizes a two-loop subtraction formula of [Catani (1998)] to all orders.

The anomalous dimension

The renormalization factor satisfies a renormalization group equation

$$\mathbf{Z}^{-1}(\epsilon, \{\underline{p}\}, \{\underline{m}\}, \mu) \frac{d}{d \ln \mu} \mathbf{Z}(\epsilon, \{\underline{p}\}, \{\underline{m}\}, \mu) = -\mathbf{\Gamma}(\{\underline{p}\}, \{\underline{m}\}, \mu) \,.$$

The same anomalous dimension Γ governs the evolution of the hard Wilson coefficient (and the effective operator)!

$$\frac{d}{d\ln\mu} \left| \mathcal{C}(\{\underline{p}\}, \{\underline{m}\}, \mu) \right\rangle = \Gamma(\{\underline{p}\}, \{\underline{m}\}, \mu) \left| \mathcal{C}(\{\underline{p}\}, \{\underline{m}\}, \mu) \right\rangle \,.$$

Now the two things — the structure of IR singularities and soft gluon resummation — both rely on the determination of this anomalous dimension.

All-order conjecture for massless case

 The anomalous dimensions for amplitudes involving only massless partons are conjectured to be extremely simple: [Becher, Neubert (2009)]
 [Gardi, Magnea (2009)]

$$m{\Gamma}(\{\underline{p}\},\mu) = \sum_{(i,j)} \, rac{m{T}_i\cdotm{T}_j}{2} \, \gamma_{ ext{cusp}}(lpha_s) \, \lnrac{\mu^2}{-m{s}_{ij}} + \sum_i \, \gamma^i(lpha_s) \, ,$$

where $s_{ij} = 2\sigma_{ij}p_i \cdot p_j$, $\sigma_{ij} = +1$ if both momenta are incoming or outgoing, and -1 otherwise.

- Minimal structure: two parton correlations only.
- Known at two-loop by explicit calculations.
 [Aybat, Dixon, Sterman (2006)]

All-order conjecture for massless case

- Supporting argument based on soft-collinear factorization, non-abelian exponentiation theorem and consistency with collinear limits.
- ▶ Implies Casimir scaling of the cusp anomalous dimensions:

$$rac{\Gamma^q_{
m cusp}}{C_F} = rac{\Gamma^g_{
m cusp}}{C_A} = \gamma_{
m cusp}\,,$$

which is known to hold up to three-loop by explicit calculations. [Moch, Vermaseren, Vogt (2004)]

- ► For amplitudes involving massive partons, we need HQET in addition to SCET.
- ▶ Both the full and the effective theory know about the 4-velocities $v_I = p_I/m_I$ of the massive partons, which define the cusp angles

 $\cosh \beta_{IJ} = w_{IJ} = -\sigma_{IJ} v_I \cdot v_J$.

- Much weaker constraints hold for the massive case:
 - no soft-collinear factorization
 - no constraint from (quasi-)collinear limits
- ▶ Non-abelian exponentiation theorem still apply.

Anomalous dimension to two loops

General structure [Becher, Neubert (2009)]:

$$\begin{split} \Gamma(\{\underline{p}\},\{\underline{m}\},\mu) &= \sum_{(i,j)} \frac{T_i \cdot T_j}{2} \gamma_{\text{cusp}}(\alpha_s) \ln \frac{\mu^2}{-s_{ij}} + \sum_i \gamma^i(\alpha_s) \\ &- \sum_{(I,J)} \frac{T_I \cdot T_J}{2} \gamma_{\text{cusp}}(\beta_{IJ},\alpha_s) + \sum_I \gamma^I(\alpha_s) \\ &+ \sum_{I,j} T_I \cdot T_j \gamma_{\text{cusp}}(\alpha_s) \ln \frac{m_I \mu}{-s_{Ij}} \\ &+ \sum_{(I,J,K)} i f^{abc} T_I^a T_J^b T_K^c F_1(\beta_{IJ},\beta_{JK},\beta_{KI}) \\ &+ \sum_{(I,J)} \sum_k i f^{abc} T_I^a T_J^b T_K^c f_2 \Big(\beta_{IJ},\ln \frac{-\sigma_{Jk} \nu_J \cdot p_k}{-\sigma_{Ik} \nu_I \cdot p_k} \Big) \end{split}$$

▶ New functions F_1 and f_2 appear! F_1 represents correlations among three massive partons, while f_2 among two massive and one massless partons. (Correlations among one massive and two massless partons vanish.)

Calculation of F_1

Relevant two-loop Feynman diagrams:

 "Planar" and counter-term diagrams simple: evaluate using standard techniques.

$$\begin{split} F_1^{(2) \text{ planar+CT}} &= \frac{4}{3} \sum_{I,J,K} \epsilon_{IJK} \beta_{KI} \, \coth \beta_{KI} \, \coth \beta_{IJ} \\ &\times \left[\beta_{IJ}^2 + 2\beta_{IJ} \ln(1 - e^{-2\beta_{IJ}}) - \text{Li}_2(e^{-2\beta_{IJ}}) + \frac{\pi^2}{6} \right], \end{split}$$

Calculation of the triple-gluon diagram

- Mitov, Sterman and Sung calculated it numerically in the non-physical region.
 [Mitov, Sterman, Sung (2009)]
- We obtained the analytical result.
 [Ferroglia, Neubert, Pecjak, LLY (2009)]
- Our method is based on the following Mellin-Barnes representation:

$$\begin{split} \mathbf{I}(w_{12}, w_{23}, w_{31}) &= 2(w_{23} \, w_{31} + w_{12}) \, \frac{1}{(2\pi i)^5} \int_{-i\infty}^{+i\infty} \left[\prod_{i=1}^5 dz_i \right] (2w_{23})^{2z_1 - 1} (2w_{31})^{2z_2 - 1} (2w_{12})^{2z_3} \\ &\times \frac{\Gamma(1 - 2z_1) \, \Gamma(1 - 2z_2)}{\Gamma(z_1 + z_2 + z_3 + z_4 + z_5)} \, \Gamma(-2z_3) \, \Gamma(-z_4) \, \Gamma(z_1 + z_3) \, \Gamma(z_1 + z_5) \, \Gamma(z_2 - z_5) \, \Gamma(z_3 + z_5) \\ &\times \, \Gamma(z_1 + z_2 + z_4) \, \Gamma(z_2 + z_3 + z_4) \, \Gamma(z_2 + z_4 + z_5) \, \Gamma(1 - z_2 - z_4 - z_5) \,, \end{split}$$

from which the contribution to F_1 can be obtained:

$$F_1^{(2) \text{ non-planar}} = rac{4}{3} \sum_{I,J,K} \epsilon_{IJK} I(w_{IJ}, w_{JK}, w_{KI}) \, .$$

Calculation of the triple-gluon diagram

- ► The above representation is not reducible with Barnes' Lemmas, and is also difficult to evaluate by residue method.
- ► The key observation here is that it is much more natural to work with cusp angles β_{IJ} instead of scalar products w_{IJ} .
- ▶ Decomposing w_{IJ} as w_{IJ} = cosh β_{IJ} = (α_{IJ} + α_{IJ}⁻¹)/2 with α_{IJ} ≡ e^{β_{IJ}}, and introducing three more Mellin-Barnes parameters, the resulting representation can be reduced using Barnes' Lemmas to a three-fold one:

$$\begin{split} I(w_{12}, w_{23}, w_{31}) &= 2(w_{23} \, w_{31} + w_{12}) \, \frac{1}{(2\pi i)^3} \int\limits_{-i\infty}^{+i\infty} dz_1 \, dz_2 \, dz_3 \, \alpha_{12}^{-2z_3} \alpha_{23}^{-1-2z_1} \alpha_{31}^{-1-2z_2} \\ &\times \, \Gamma(-z_1 - z_3) \, \Gamma(1 + z_1 - z_3) \, \Gamma(-z_1 + z_3) \, \Gamma(1 + z_1 + z_3) \\ &\times \, \Gamma^2(-z_2 - z_3) \, \Gamma^2(1 + z_2 - z_3) \, \Gamma^2(-z_2 + z_3) \, \Gamma^2(1 + z_2 + z_3) \, . \end{split}$$

Final result for F_1

The remaining integrals can be performed by closing the contours and summing up the residues. The result turns out to be amazingly simple after anti-symmetrized sum:

$$F_1^{(2) ext{ non-planar }} = -rac{4}{3} \sum_{I,J,K} \epsilon_{IJK} \, eta_{IJ}^2 \, eta_{KI} \, \coth eta_{KI} \, .$$

► Together with the planar and counter-term diagrams, the final result for *F*¹ is

$$F_{1}^{(2)}(\beta_{12},\beta_{23},\beta_{31}) = \frac{4}{3} \sum_{I,J,K} \epsilon_{IJK} r(\beta_{KI}) g(\beta_{IJ}),$$

where

$$\begin{split} r(\beta) &= \beta \coth \beta \\ g(\beta) &= \coth \beta \left[\beta^2 + 2\beta \ln(1 - e^{-2\beta}) - \operatorname{Li}_2(e^{-2\beta}) + \frac{\pi^2}{6} \right] - \beta^2 - \frac{\pi^2}{6} \,. \end{split}$$

Derivation of f_2

► The derivation of *f*₂ is straightforward by observing that *f*₂ is the limit of *F*₁ when one of the partons becomes massless:

$$\begin{split} f_2^{(2)} \Big(\beta_{12}, \ln \frac{-\sigma_{23} \, \nu_2 \cdot p_3}{-\sigma_{31} \, \nu_1 \cdot p_3} \Big) &= 3 \lim_{m_3 \to 0} F_1^{(2)} (\beta_{12}, \beta_{23}, \beta_{31}) \\ &= -4 \, g(\beta_{12}) \, \ln \frac{-\sigma_{23} \, \nu_2 \cdot p_3}{-\sigma_{13} \, \nu_1 \cdot p_3} \,, \end{split}$$

Properties of F_1 and f_2

▶ F_1 and f_2 do not vanish for $v_1 \rightarrow v_2$! In contrast to naive expectations based on anti-symmetry.

 β_{12}

$$\begin{split} \lim_{\beta_{12} \to i\pi} F_1^{(2)}(\beta_{12}, \beta_{23}, \beta_{31}) &= -\sigma_{13} \frac{4}{3} \; \left\{ \left[\pi^2 + 2i\pi \ln(2|\vec{v}_{12}|) \right] r'(\beta_{31}) - i\pi \, g'(\beta_{31}) \right\} \\ & \times \left(\frac{\vec{v}_{12}}{|\vec{v}_{12}|} \cdot \frac{\vec{v}_3}{|\vec{v}_3|} \right), \\ \max_{i\pi} f_2^{(2)} \left(\beta_{12}, \ln \frac{-\sigma_{23} \, v_2 \cdot p_3}{-\sigma_{13} \, v_1 \cdot p_3} \right) &= 4 \left[\pi^2 + 2i\pi \ln(2|\vec{v}_{12}|) \right] \frac{\vec{v}_{12}}{|\vec{v}_{12}|} \cdot \frac{\vec{p}_3}{|\vec{p}_3|} \,. \end{split}$$

▶ In the massless limit $m_I \rightarrow 0$ or $|w_{IJ}| \rightarrow \infty$, F_1 and f_2 vanish like $(m_I m_J / s_{IJ})^2$, in accordance with a mass factorization theorem. [Mitov, Moch (2007)], [Becher, Melnikov (2007)]

First application: top quark pair production

▶ Predict all IR poles in two-loop amplitudes in analytic form.

- Results for qq̄ channel verified with numeric results of [Czakon (2008)] and analytic results of [Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)], [Bonciani, Ferroglia, Gehrmann, Studerus (2009)].
- Results for gg channel are new, and were later confirmed by [Czakon: RADCOR 2009].
- ▶ Predict logarithmic terms at next-to-next-to-leading order.
- ► Soft gluon resummation at next-to-next-to-leading-log.

First application: top quark pair production

▶ Predict all IR poles in two-loop amplitudes in analytic form.

- Results for qq̄ channel verified with numeric results of [Czakon (2008)] and analytic results of [Bonciani, Ferroglia, Gehrmann, Maitre, Studerus (2008)], [Bonciani, Ferroglia, Gehrmann, Studerus (2009)].
- Results for gg channel are new, and were later confirmed by [Czakon: RADCOR 2009].
- Predict logarithmic terms at next-to-next-to-leading order.
- Soft gluon resummation at next-to-next-to-leading-log.

 \rightarrow See the talk by Ben Pecjak

IR singularities to two-loops

The IR singularities in the amplitudes are determined to two-loops via

$$\begin{split} \left| \mathcal{M}^{(1),\,\text{sing}} \right\rangle &= \left| \mathbf{Z}^{(1)} \right| \left| \mathcal{M}^{(0)} \right\rangle \ , \\ \left| \mathcal{M}^{(2),\,\text{sing}} \right\rangle &= \left[\mathbf{Z}^{(2)} - \left(\mathbf{Z}^{(1)} \right)^2 \right] \left| \mathcal{M}^{(0)} \right\rangle + \left(\mathbf{Z}^{(1)} \left| \mathcal{M}^{(1)} \right\rangle \right)_{\text{poles}} , \end{split}$$

The renormalization factor is given by

$$egin{aligned} & Z = 1 + rac{lpha_s^{
m QCD}}{4\pi} \left(rac{\Gamma_0'}{4\epsilon^2} + rac{\Gamma_0}{2\epsilon}
ight) \ & + \left(rac{lpha_s^{
m QCD}}{4\pi}
ight)^2 \left\{rac{(\Gamma_0')^2}{32\epsilon^4} + rac{\Gamma_0'}{8\epsilon^3} \left(\Gamma_0 - rac{3}{2}\,eta_0
ight) + rac{\Gamma_0}{8\epsilon^2} \left(\Gamma_0 - 2eta_0
ight) + rac{\Gamma_1'}{16\epsilon^2} + rac{\Gamma_1}{4\epsilon} \ & - rac{2T_F}{3} \left[\Gamma_0' \left(rac{1}{2\epsilon^2} \ln rac{\mu^2}{m_t^2} + rac{1}{4\epsilon} \left[\ln^2 rac{\mu^2}{m_t^2} + rac{\pi^2}{6}
ight]
ight) + rac{\Gamma_0}{\epsilon} \ln rac{\mu^2}{m_t^2}
ight]
ight\} + \mathcal{O}(lpha_s^3) \,. \end{aligned}$$

The anomalous dimension Γ is expressed in terms of color generators *T_i* and the functions *γ*_{cusp}, *γ^q*, *γ^g*, *γ^Q* and *f₂*.

IR singularities to two-loops

The IR singularities in the amplitudes are determined to two-loops via

$$\begin{vmatrix} \mathcal{M}^{(1), \, \text{sing}} \end{pmatrix} = \mathbf{Z}^{(1)} \begin{vmatrix} \mathcal{M}^{(0)} \rangle \\ \\ \end{pmatrix} \xrightarrow{} \text{Still need to explain} \\ \begin{vmatrix} \mathcal{M}^{(2), \, \text{sing}} \end{pmatrix} = \left[\mathbf{Z}^{(2)} - \left(\mathbf{Z}^{(1)} \right)^2 \right] \begin{vmatrix} \mathcal{M}^{(0)} \end{pmatrix} + \left(\mathbf{Z}^{(1)} \begin{vmatrix} \mathcal{M}^{(1)} \end{pmatrix} \right)_{\text{poles}},$$

The renormalization factor is given by

$$egin{aligned} & Z = 1 + rac{lpha_s^{
m QCD}}{4\pi} \left(rac{\Gamma_0'}{4\epsilon^2} + rac{\Gamma_0}{2\epsilon}
ight) \ & + \left(rac{lpha_s^{
m QCD}}{4\pi}
ight)^2 \left\{rac{(\Gamma_0')^2}{32\epsilon^4} + rac{\Gamma_0'}{8\epsilon^3} \left(\Gamma_0 - rac{3}{2}\,eta_0
ight) + rac{\Gamma_0}{8\epsilon^2} \left(\Gamma_0 - 2eta_0
ight) + rac{\Gamma_1'}{16\epsilon^2} + rac{\Gamma_1}{4\epsilon} \ & - rac{2T_F}{3} \left[\Gamma_0' \left(rac{1}{2\epsilon^2} \ln rac{\mu^2}{m_t^2} + rac{1}{4\epsilon} \left[\ln^2 rac{\mu^2}{m_t^2} + rac{\pi^2}{6}
ight]
ight) + rac{\Gamma_0}{\epsilon} \,\ln rac{\mu^2}{m_t^2}
ight]
ight\} + \mathcal{O}(lpha_s^3) \,. \end{aligned}$$

• The anomalous dimension Γ is expressed in terms of color generators T_i and the functions γ_{cusp} , γ^q , γ^g , γ^Q and f_2 .

Color space formalism

[Catani, Seymour (1996)]

• Consider the on-shell amplitude ($\alpha\beta = q\bar{q}, gg$)

$$\mathcal{M}_{\{a\}} = \left\langle t^{a_3}(p_3) \, \overline{t}^{a_4}(p_4) \, \big| \, \mathcal{H} \, \big| \, \alpha^{a_1}(p_1) \, \beta^{a_2}(p_2) \right\rangle \,.$$

► Introduce an orthonormal basis of vectors {|*a*₁, *a*₂, *a*₃, *a*₄⟩} and a vector |*M*⟩, so that

$$\mathcal{M}_{\{a\}} = \langle a_1, a_2, a_3, a_4 \, | \, \mathcal{M} \rangle \; .$$

▶ Color generators *T*^{*i*} are defined by

$$T_i^c |\ldots, a_i, \ldots \rangle = (T_i^c)_{b_i a_i} |\ldots, b_i, \ldots \rangle ,$$

where $(\mathbf{T}_{i}^{c})_{ba}$ is

- ▶ t_{ba}^c for a final-state quark or an initial-state anti-quark;
- −t^c_{ab} for a final-state anti-quark or an initial-state quark;
 if^{abc} for a gluon.

Color space formalism

Introduce the orthogonal basis

$$\begin{pmatrix} c_1^{q\bar{q}} \\ _{\{a\}} = \delta_{a_1 a_2} \delta_{a_3 a_4} , \quad \begin{pmatrix} c_2^{q\bar{q}} \\ _{\{a\}} = t_{a_2 a_1}^c t_{a_3 a_4}^c , \\ \begin{pmatrix} c_1^{gg} \\ _{\{a\}} = \delta^{a_1 a_2} \delta_{a_3 a_4} , \quad \begin{pmatrix} c_2^{gg} \\ _{\{a\}} = i f^{a_1 a_2 c} t_{a_3 a_4}^c , \quad \begin{pmatrix} c_3^{gg} \\ _{3} a_4 \end{pmatrix} = d^{a_1 a_2 c} t_{a_3 a_4}^c ,$$

and the vectors

$$|c_I
angle\equiv\sum_{\{a\}}\left(c_I
ight)_{\{a\}}|\{a\}
angle\;.$$

 \blacktriangleright Define the "vector components" of $|\mathcal{M}\rangle$ and the "matrix elements" of Γ as

$$\mathcal{M}_{I} = rac{1}{\langle c_{I} \mid c_{I}
angle} \, \langle c_{I} \mid \mathcal{M}
angle \;, \quad \Gamma_{IJ} = rac{1}{\langle c_{I} \mid c_{I}
angle} \, \langle c_{I} \mid \mathbf{\Gamma} \mid c_{J}
angle \;,$$

so that

$$(\mathbf{\Gamma} | \mathcal{M} \rangle)_I = \Gamma_{IJ} \mathcal{M}_J.$$

Two-loop anomalous dimension matrices

Now we are ready to present

$$\begin{split} \mathbf{\Gamma}_{q\bar{q}} &= \left[C_F \, \gamma_{\text{cusp}}(\alpha_s) \, \ln \frac{-s}{\mu^2} + C_F \, \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) + 2\gamma^q(\alpha_s) + 2\gamma^Q(\alpha_s) \right] \mathbf{1} \\ &+ \frac{N}{2} \left[\gamma_{\text{cusp}}(\alpha_s) \, \ln \frac{(-s_{13})(-s_{24})}{(-s) \, m_t^2} - \gamma_{\text{cusp}}(\beta_{34}, \alpha_s) \right] \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\ &+ \gamma_{\text{cusp}}(\alpha_s) \, \ln \frac{(-s_{13})(-s_{24})}{(-s_{14})(-s_{23})} \left[\begin{pmatrix} 0 & \frac{C_F}{2N} \\ 1 & -\frac{1}{N} \end{pmatrix} + \frac{\alpha_s}{4\pi} \, g(\beta_{34}) \begin{pmatrix} 0 & \frac{C_F}{2} \\ -N & 0 \end{pmatrix} \right] . \end{split}$$

• Similar for gg, but a 3×3 matrix.

Conclusions

- Infrared singularities play an important role in QCD and can be determined systematically from anomalous dimensions.
- We compute the anomalous dimensions to two-loop order for scattering amplitudes involving arbitrary numbers of massless and massive partons.
- The infrared structure of any two-loop amplitude in non-abelian gauge theories is therefore well understood.
- Our results also enable the soft gluon resummation for such processes at next-to-next-to-leading-log level.
- ► First application: top quark pair production.